www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Ableitung - Quotientenregel
Ableitung - Quotientenregel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung - Quotientenregel: Frage
Status: (Frage) beantwortet Status 
Datum: 13:12 Mo 25.07.2005
Autor: Scrapy

Hallo,

ich muss folgende Gleichung nach p1 ableiten:

z =  [mm] \bruch{xm}{4y^{2} + yx} [/mm]

Kann mir jemand die Quotientenregel nochmal genau erklären. Ich hab es zwar schon versucht, aber ich komm nie auf das richtige Ergebnis.

Die Lösung soll sein:  [mm] \bruch{-xm(8y+x)}{(4y^{2} + yx)^{2}} [/mm]





        
Bezug
Ableitung - Quotientenregel: Quotientenregel
Status: (Antwort) fertig Status 
Datum: 13:45 Mo 25.07.2005
Autor: sirius

Die Quotientenregel:

[mm] f'(x)=\bruch{u'(x)*v(x)-u(x)*v'(x)}{v^2(x)} [/mm]
oder kürzer:
[mm] f'=\bruch{u'*v-u*v'}{v^2} [/mm]

Und das ganze bei einer Originalfuntion die so aussieht:
[mm] f(x)=\bruch{u(x)}{v(x)} [/mm]

Sortieren wir erstmal was u und v bei dir sind:
[mm] u=x*m [/mm]
[mm] v=4*y^2+y*x [/mm]

Soweit, so gut. Jetzt haben wir u und v. Benötigen wir noch u' und v' (die erste Ableitung von u und v)


[mm] u'=m [/mm] Ableitung einer linearen Funktion
[mm] v'=y [/mm]  Ableitung von linearer und konstanter Funtionen in einer Summenformel

So, und jetzt noch oben einsetzen:
[mm] f'=\bruch{u'*v-u*v'}{v^2}=\bruch{(m)*(4*y^2+y*x)-(x*m)*(y)}{(4*y^2+y*x)^2} [/mm]

Und wenn man jetzt zusammenfasst sieht man, dass es nicht die von dir angegebene Lösung ergibt :-(

Also war es kein z(x) sondern ein z(y) und man muss alles nach y ableiten
Demnach sind:
$ u'=0 $ Ableitung konstanter Funktionen
$ v'=8*y+x $ Ableitung lineare Funktion

[mm] f'=\bruch{u'*v-u*v'}{v^2}=\bruch{(0)*(4*y^2+y*x)-(x*m)*(8*y+x)}{(4*y^2+y*x)^2} [/mm]

Und dann kommt dein Ergebniss heraus :-)



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de