www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung an der Stelle x0
Ableitung an der Stelle x0 < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung an der Stelle x0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Fr 29.06.2012
Autor: Parkan

Aufgabe
Man Überprüfe anhand der Definition der Differenzierbarkeit , ob die folgende
Funktion f : R [mm]\to[/mm] R an der Stelle x0 = 6 differenzierbar ist:

[mm]f(x)=|3-\bruch{1}{2}x|[/mm]


Ich habe im Script nachgeschaut da steht.
Die reele Funktion  f heisst differenzierbar an der Stelle x0 wenn der Grenzwert  [mm]\limes_{n\rightarrow x0} (\bruch{f(x)-f(x0)}{x-x0})[/mm] exestiert.

So die Frage wie finde ich raus ob er exestiert. Ich habe mal da eingesetzt und bekomme das hier.

[mm]\limes_{n\rightarrow 6} (\bruch{(3-\bruch{1}{2}x)-0}{x-6})[/mm] ist das richtig das man das so einsetzen muss? Wenn ja was jetzt? Soll ich jetzt x ausklammern, und alle entstandenen brüche wo x im nenner steht weg streichen?

Gruß
Janina


        
Bezug
Ableitung an der Stelle x0: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Fr 29.06.2012
Autor: leduart

Hallo
> Man Überprüfe anhand der Definition der
> Differenzierbarkeit , ob die folgende
>  Funktion f : R [mm]\to[/mm] R an der Stelle x0 = 6 differenzierbar
> ist:
>  
> [mm]f(x)=|3-\bruch{1}{2}x|[/mm]
>  
> Ich habe im Script nachgeschaut da steht.
>  Die reele Funktion  f heisst differenzierbar an der Stelle
> x0 wenn der Grenzwert  [mm]\limes_{n\rightarrow x0} (\bruch{f(x)-f(x0)}{x-x0})[/mm]
> exestiert.
>  
> So die Frage wie finde ich raus ob er exestiert. Ich habe
> mal da eingesetzt und bekomme das hier.

existiert nicht exestiert  

> [mm]\limes_{n\rightarrow 6} (\bruch{(3-\bruch{1}{2}x)-0}{x-6})[/mm]
> ist das richtig das man das so einsetzen muss?

ja!
>Wenn ja was

> jetzt? Soll ich jetzt x ausklammern, und alle entstandenen
> brüche wo x im nenner steht weg streichen?

wenn x gegen 6 geht, fallen doch die brüche mit 6 im Nenner nicht weg? du verwechselst da was mit Folgen, wo n gegen unendlich geht,
Duerreichst nichts  mit x ausklammern, aber wenn du im Zähler 1/2 ausklammerst hilft dir das!
Gruss leduart

Bezug
                
Bezug
Ableitung an der Stelle x0: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Fr 29.06.2012
Autor: Parkan

Hmm jetzt habe ich im Zähler 1/2 (6-x) und im nenner x-6. Was sagt mir das den jetzt ;D ?



EDIT:  Jetzt habe ich mal -1/2 ausgeklammert.  Jetzt kann ich den Bruch komplett weg kürzen. Es bleibt -1/2 stehen.

Ist also f'(6)= -1/2  ??

Bezug
                        
Bezug
Ableitung an der Stelle x0: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Fr 29.06.2012
Autor: MathePower

Hallo Parkan,

> Hmm jetzt habe ich im Zähler 1/2 (6-x) und im nenner x-6.
> Was sagt mir das den jetzt ;D ?
>


Das sagt Dir zunächst, daß Du für [mm]x\not=6[/mm] kürzen kannst.

Lässt Du nun x gegen 6 laufen, so ergibt sich die linksseitige Ableitung.

Berechnet hast Du [mm]\limes_{x \to 6, \ x < 6}\bruch{f\left(x\right)}{x-6}[/mm]

Jetzt benötigst Du noch die rechtsseitige Ableitung:

[mm]\limes_{x \to 6, \ x \blue{>} 6}\bruch{f\left(x\right)}{x-6}[/mm]

Sind links- und rechtsseitige Ableitung an der Stelle 6 gleich,
so ist die Funktion an dieser Stelle differenzierbar.


>
> EDIT:  Jetzt habe ich mal -1/2 ausgeklammert.  Jetzt kann
> ich den Bruch komplett weg kürzen. Es bleibt -1/2 stehen.
>  
> Ist also f'(6)= -1/2  ??


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de