www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung berechnen
Ableitung berechnen < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:06 Sa 05.01.2013
Autor: BunDemOut

Aufgabe
Berechnen Sie:

[mm] \bruch{d}{dx} \bruch{y y'}{\wurzel{1+(y')^2}} [/mm]

Wobei y=y(x) und [mm] y'(x)=\bruch{dy}{dx} [/mm]


Zwischenergebnis von mir:

[mm] \bruch{d}{dx} \bruch{y y'}{\wurzel{1+(y')^2}}=\bruch{y'' y}{\wurzel{1+(y')^2}}+(\bruch{y'}{\wurzel{1+(y')^2}}+y*\bruch{d}{dx} \bruch{1}{\wurzel{1+(y')^2}})*y' [/mm]


[mm] \bruch{d}{dx} \bruch{1}{\wurzel{1+(y')^2}}=-\bruch{y' y''}{(1+y'^2)^{\bruch{3}{2}}} [/mm]

Wenn ich das oben einsetze komme ich auf eine Lösung die nicht mit untenstehener Lösung übereinstimmt.

Als Lösung liegt mir folgendes Ergebnis vor:

[mm] \bruch{d}{dx} \bruch{y y'}{\wurzel{1+(y')^2}}=\bruch{y'^4+y'^2+y'' y}{(1+y'^2)^{\bruch{3}{2}}} [/mm]


Wo habe ich einen Fehler gemacht?

Vielen Dank!

        
Bezug
Ableitung berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Sa 05.01.2013
Autor: Richie1401

Hallo,

> Berechnen Sie:
>  
> [mm]\bruch{d}{dx} \bruch{y y'}{\wurzel{1+(y')^2}}[/mm]
>  
> Wobei y=y(x) und [mm]y'(x)=\bruch{dy}{dx}[/mm]
>  Zwischenergebnis von mir:
>  
> [mm]\bruch{d}{dx} \bruch{y y'}{\wurzel{1+(y')^2}}=\bruch{y'' y}{\wurzel{1+(y')^2}}+(\bruch{y'}{\wurzel{1+(y')^2}}+y*\bruch{d}{dx} \bruch{1}{\wurzel{1+(y')^2}})*y'[/mm]
>  
>
> [mm]\bruch{d}{dx} \bruch{1}{\wurzel{1+(y')^2}}=-\bruch{y' y''}{(1+y'^2)^{\bruch{3}{2}}}[/mm]
>  
> Wenn ich das oben einsetze komme ich auf eine Lösung die
> nicht mit untenstehener Lösung übereinstimmt.
>  
> Als Lösung liegt mir folgendes Ergebnis vor:
>  
> [mm]\bruch{d}{dx} \bruch{y y'}{\wurzel{1+(y')^2}}=\bruch{y'^4+y'^6+y'' y}{(1+y'^2)^{\bruch{3}{2}}}[/mm]

Bist du dir bei diesem Ergebnis sicher?

>  
>
> Wo habe ich einen Fehler gemacht?
>  
> Vielen Dank!

Denke daran:
1) Du benötigst das Quotientenkriterium.
2) Für die Ableitung von Zähler benötigst du die Produktregel.
3) Für die Ableitung von Nenner benötigst du die Kettenregel.

Es wäre sinnvoll, wenn du uns die Ableitungen von Zähler und Nenner zeigst. Vermutlich steckt dort der Fehler.

Bezug
                
Bezug
Ableitung berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:29 Sa 05.01.2013
Autor: BunDemOut

Ja, so ist es in diesem Skript hier angegeben:
http://online.math.uh.edu/HoustonACT/Pete/presentation.pdf

Nunja, ich habe das ohne Quotientenregel gemacht indem ich das in Produkte zerlegt habe, siehe mein Zwischenergebnis.



Bezug
                        
Bezug
Ableitung berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Sa 05.01.2013
Autor: Richie1401

Hallo

> Ja, so ist es in diesem Skript hier angegeben:
>  
> http://online.math.uh.edu/HoustonACT/Pete/presentation.pdf

Ich wollte ungern alle 138 Seiten durchschauen.

>  
> Nunja, ich habe das ohne Quotientenregel gemacht indem ich
> das in Produkte zerlegt habe, siehe mein Zwischenergebnis.

Wie zerlegt man Produkte?
Wenn du keine Quotientenregel anwenden willst, dann musst du eben die Produktregel mit drei Faktoren benutzen.

>  
>  


Bezug
                                
Bezug
Ableitung berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:39 Sa 05.01.2013
Autor: BunDemOut

Seite 26.

Genau das habe ich doch oben gemacht, oder hast du dir mein Zwischenergebnis nicht angesehen?

Bezug
                                        
Bezug
Ableitung berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Sa 05.01.2013
Autor: MathePower

Hallo BunDemOut,

> Seite 26.
>  
> Genau das habe ich doch oben gemacht, oder hast du dir mein
> Zwischenergebnis nicht angesehen?


Mit Deinem Zwischenergebnis solltest Du
auch auf die angegebene Lösung kommen.

Vielleicht ist beim Ausmultiplizieren und
anschliessendem Zusammenfassen ein Fehler passiert.


Gruss
MathePower


Bezug
                                                
Bezug
Ableitung berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 Sa 05.01.2013
Autor: BunDemOut

@Mathepower: Danke für deinen Hinweis. Ich denke ich habe meinen Fehler gefunden...

Bezug
        
Bezug
Ableitung berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:08 Sa 05.01.2013
Autor: Richie1401

Hallo,

> Berechnen Sie:
>  
> [mm]\bruch{d}{dx} \bruch{y y'}{\wurzel{1+(y')^2}}[/mm]
>  
> Wobei y=y(x) und [mm]y'(x)=\bruch{dy}{dx}[/mm]
>  Zwischenergebnis von mir:
>  
> [mm]\bruch{d}{dx} \bruch{y y'}{\wurzel{1+(y')^2}}=\bruch{y'' y}{\wurzel{1+(y')^2}}+(\bruch{y'}{\wurzel{1+(y')^2}}+y*\bruch{d}{dx} \bruch{1}{\wurzel{1+(y')^2}})*y'[/mm]
>  
>
> [mm]\bruch{d}{dx} \bruch{1}{\wurzel{1+(y')^2}}=-\bruch{y' y''}{(1+y'^2)^{\bruch{3}{2}}}[/mm]
>  
> Wenn ich das oben einsetze komme ich auf eine Lösung die
> nicht mit untenstehener Lösung übereinstimmt.
>  
> Als Lösung liegt mir folgendes Ergebnis vor:
>  
> [mm]\bruch{d}{dx} \bruch{y y'}{\wurzel{1+(y')^2}}=\bruch{y'^4+y'^6+y'' y}{(1+y'^2)^{\bruch{3}{2}}}[/mm]

Und genau dieses Ergebnis steht nicht in dem Dokument in der PDF.

>  
>
> Wo habe ich einen Fehler gemacht?
>  
> Vielen Dank!


Bezug
                
Bezug
Ableitung berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:16 So 06.01.2013
Autor: BunDemOut

Doch tut es.
Seite 26. Allerdings ist mir ein kleiner Tipfehler passiert, welchen ich nun im Eingangspost ausgebessert habe.

Sorry aber deine Posts hier in diesem Diskussionsstrang sind unnötig und haben mir in keinster Weise geholfen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de