www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Ableitung bilden
Ableitung bilden < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung bilden: Wie mache ich die erste Abl.?
Status: (Frage) beantwortet Status 
Datum: 18:17 Di 23.11.2010
Autor: Schaf2010

Aufgabe
Bestimme die erste Ableitung.
a) f(x) = [mm] 2x^5 [/mm] ( 3tx + 4)

Ich möchte die Produktregel anwenden (bzw. so sollen wir es machen)
Bisher habe ich:
f(x) = u(x) * v(x)
f'(x) = (u'(x) * v(x)) + (u(x) * v'(x))


u(x) = [mm] 2x^5 [/mm]  u'(x)= [mm] 10x^4 [/mm]
v(x) = 3tx +4  v'(x) = 3t + 1 !?!?!

wie bestimme ich die ableitung von v(x) ? das t muss ich ja eigentlich ignorieren, aber was ist dann mit der 3? bleibt die auch dort stehen?

meine lehrerin gab allgemein die Lösung an:
f'(x) = [mm] 30tx^4 [/mm] + [mm] 30tx^5 [/mm] + [mm] 40x^4 [/mm]

wenn ich die v'(x) wüsste dann, weiß ich wie ich fortfahren muss.

schreibe morgen die Klausur, würde mich freuen wenn ihr fix antworten könntet!

DANKE!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung bilden: Tipp
Status: (Antwort) fertig Status 
Datum: 18:27 Di 23.11.2010
Autor: hawkingfan

Dein Ergebnis für die ABleitung von v ist nicht ganz richtig.
Bei einer Funktion wird die Addition einer Konstanten immer ignoriert, die Ableitung von [mm] f(x)=x^{3}+8 [/mm] ist also zum Beispiel das gleiche wie das Ableiten der Funktion [mm] g(x)=x^{3}: [/mm] f´(x)=g´(x). Beim Ableiten der Funktion
v(x)=3tx+4 verschwindet die 4 aso, es reicht also 3tx abzuleiten.

Bezug
                
Bezug
Ableitung bilden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Di 23.11.2010
Autor: Schaf2010

aber das x muss man auch ableiten!
denn erste ableitung von x= 1
also v'(x) = 3t *1
           = 3t

Bezug
                        
Bezug
Ableitung bilden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:40 Di 23.11.2010
Autor: moody


> aber das x muss man auch ableiten!
>  denn erste ableitung von x= 1
>  also v'(x) = 3t *1
>             = 3t

[ok]

Aber wozu der Schritt mit *1?



v(x) = 3tx +4

Wie bereits gepostet wurde ignoriert man die Konstante beim Ableiten.
Und die Ableitung nach x von 3tx ist 3t.

v'(x) = 3t

lg moody

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de