www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung der Funktion
Ableitung der Funktion < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung der Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:22 Di 26.05.2009
Autor: prikolshik

Aufgabe
Bestimmen Sie die Ableitung der Funktion [mm] y=\wurzel{x+\wurzel{x}} [/mm] in ihrem Definitionsbereich.

So habe ich angefangen:

[mm] y'=\wurzel{x+x^\bruch{1}{2}}=\bruch{1/2}{2}\wurzel{x^-^1+x^-^\bruch{1}{2}}=\bruch{1}{4}\wurzel{x^-^1+x^-^\bruch{1}{2}} [/mm]


Richtig oder doch nicht ?! ... jedenfalls weiß ich nicht mehr weiter :(



Vielen Dank im Voraus,
prikolshik

        
Bezug
Ableitung der Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 06:50 Di 26.05.2009
Autor: Teufel

Hi!

Stimmt leider nicht. Sieht auch so aus, als wenn du nur unter der großen Wurzel ableiten wolltest und die Wurzel einfach so stehengelassen hast.
Aber x abgeleitet ist auch nicht [mm] x^{-1}! [/mm]

Du hast hier eine Verkettung $f(g(x))$ mit [mm] f(x)=\wurzel{x} [/mm] und [mm] g(x)=x+\wurzel{x}. [/mm]
Und man leitet Verkettungen so ab: $(f(g(x)))'=f'(g(x))*g'(x)$ (Kettenregel).

In deinem Fall:
[mm] f(x)=\wurzel{x}=x^{\bruch{1}{2}} [/mm]
[mm] f'(x)=\bruch{1}{2}x^{-\bruch{1}{2}}=\bruch{1}{2*\wurzel{x}} [/mm]
$f'(g(x))=...$

[mm] g(x)=x+\wurzel{x}. [/mm]
$g'(x)=...$

Dann nur noch in die Formel einsetzen.

[anon] Teufel

Bezug
                
Bezug
Ableitung der Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:57 Di 26.05.2009
Autor: prikolshik

Hi und danke für die Antwort.

Das Ableitung der Fkt [mm] f(x)=\wurzel{x+\wurzel{x}} [/mm] soll angeblich [mm] f'(x)=\bruch{1}{4}*\bruch{2\wurzel{x}+1}{\wurzel{x+\wurzel{x}}*\wurzel{x}} [/mm] sein.

Die Einleitung von Vorhin war hilfreich und verständlich jedoch habe ich es nicht geschaft weiter zu kommen und zu dem o.g. Ergebnis kommen. Vielleicht kannst du die Ableitung zu ende machen.


Im Voraus dankend,
prikolshik

Bezug
                        
Bezug
Ableitung der Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Di 26.05.2009
Autor: Teufel

Wenn du die Kettenregel anwendest, solltest du [mm] f'(x)=\bruch{1+\bruch{1}{2*\wurzel{x}}}{2*\wurzel{x+\wurzel{x}}} [/mm] bekommen. Hattest du das? Wenn ja, würde das auch stimmen.

Zum angegebenen Ergebnis kommt man, wenn man den Bruch mit [mm] 2*\wurzel{x} [/mm] erweitert!

[anon] Teufel

Bezug
                                
Bezug
Ableitung der Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:14 Di 26.05.2009
Autor: prikolshik

Perfekt! ... Besten Dank! ...  Habe genau das Selbe als Ergebnis!

Bezug
                                        
Bezug
Ableitung der Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:15 Di 26.05.2009
Autor: Teufel

Immer wieder gerne!

[anon] Teufel

Bezug
        
Bezug
Ableitung der Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:49 Di 26.05.2009
Autor: prikolshik

Aufgabe
Um das Erlernte etwas zu vertiefen habe ich versucht ein ähnlich schwere Fkt abzuleiten

[mm] f(x)=\wurzel{3x^2+\wurzel{4x}} [/mm]

[mm] f'(x)=\bruch{6x+\bruch{1}{2\wurzel{4x}}}{2\wurzel{3x^2+\wurzel{4x}}} [/mm]

Ist es richtig?!


Danke im Voraus,
prikolishik

Bezug
                
Bezug
Ableitung der Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:55 Di 26.05.2009
Autor: schachuzipus

Hallo prikolshik,

> Um das Erlernte etwas zu vertiefen habe ich versucht ein
> ähnlich schwere Fkt abzuleiten
>
> [mm]f(x)=\wurzel{3x^2+\wurzel{4x}}[/mm]
>  
> [mm]f'(x)=\bruch{6x+\bruch{1}{2\wurzel{4x}}}{2\wurzel{3x^2+\wurzel{4x}}}[/mm]
>  
> Ist es richtig?!

Das ist fast ganz richtig, du hast nur eine Kleinigkeit "unterschlagen", nämlich die innere Ableitung von der inneren Ableitung ;-)

Der Term unter der großen Wurzel wird - das hast du richtig erkannt - gem. Summenregel abgeleitet, der hintere selbst aber wieder per Kettenregel, also (nur den Ausdruck unter der Wurzel genommen):

[mm] $6x+\frac{1}{2\cdot{}\sqrt{4x}}\red{\cdot{}4}$ [/mm]

Flicke das mal bei, der Rest stimmt ...

>  
>
> Danke im Voraus,
>  prikolishik


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de