www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Ableitung des Phasenwinkels
Ableitung des Phasenwinkels < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung des Phasenwinkels: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 Di 11.10.2011
Autor: tynia

Hallo zusammen. Ich hoffe ihr könnt mir bei einem Problem helfen.

Ich habe ein komplexe Funktion [mm] z(t)=x(t)+iy(t)=e^{i \phi t} [/mm]

Den Winkel [mm] \phi [/mm] berechnen ich ja mit dem Arctan von Imaginärteil durch Realteil der komplexen Funktion,

also [mm] \phi(t)=arctan(y(t)/x(t)) [/mm]

Wie kann ich den Winkel als Taylorreihe darstellen? Ich habe in der Liteartur folgendes gefunden:

If we express the angle with a Taylor series then
[mm] \phi(t) [/mm] = [mm] \phi(t_{0}) [/mm] + [mm] (t-t_{0})\phi'(t_{0})+R [/mm]
where R is small when t is close to [mm] t_{0} [/mm]

Ich verstehe das irgendwie nicht. Kann mir das jemand erklären???

Gruß

        
Bezug
Ableitung des Phasenwinkels: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Di 11.10.2011
Autor: fred97


> Hallo zusammen. Ich hoffe ihr könnt mir bei einem Problem
> helfen.
>  
> Ich habe ein komplexe Funktion [mm]z(t)=x(t)+iy(t)=e^{i \phi t}[/mm]
>  
> Den Winkel [mm]\phi[/mm] berechnen ich ja mit dem Arctan von
> Imaginärteil durch Realteil der komplexen Funktion,
>  
> also [mm]\phi(t)=arctan(y(t)/x(t))[/mm]

Das stimmt nur für den Fall  x(t)>0     !!

>  
> Wie kann ich den Winkel als Taylorreihe darstellen? Ich
> habe in der Liteartur folgendes gefunden:
>  
> If we express the angle with a Taylor series then
>  [mm]\phi(t)[/mm] = [mm]\phi(t_{0})[/mm] + [mm](t-t_{0})\phi'(t_{0})+R[/mm]
>  where R is small when t is close to [mm]t_{0}[/mm]

Da wir nichts über x(t) und y(t) wissen, haben wir auch keine Informationen über Differenzierbarkeitseig. von [mm] \phi(t). [/mm] Aber gehen wir davon aus, dass [mm] \ph [/mm] zweimal stetig differenzierbar ist, dann sagt der Satz von Taylor:

              [mm]\phi(t)[/mm] = [mm]\phi(t_{0})[/mm] + [mm](t-t_{0})\phi'(t_{0})+R[/mm],

wobei [mm] R=\bruch{\phi''(\xi)}{2}(t-t_0)^2 [/mm] und [mm] \xi [/mm] zwischen t und [mm] t_0 [/mm] ist.

FRED

>  
> Ich verstehe das irgendwie nicht. Kann mir das jemand
> erklären???
>  
> Gruß


Bezug
                
Bezug
Ableitung des Phasenwinkels: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Di 11.10.2011
Autor: tynia

Danke erstmal für die antwort.

aber warum 2 mal stetig differenziebar???

Bezug
                        
Bezug
Ableitung des Phasenwinkels: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Di 11.10.2011
Autor: fred97


> Danke erstmal für die antwort.
>  
> aber warum 2 mal stetig differenziebar???

Na ja, das braucht man halt im Taylorschen Satz und im zugeh. Beweis.

    http://de.wikipedia.org/wiki/Taylor-Formel

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de