www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitung einer e-Funktion
Ableitung einer e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung einer e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Mi 04.02.2009
Autor: sempel22

Aufgabe
Gegeben ist die Funktion f(x) = e^(0,5*x)  *  (x - 2 )²

Bestimmten Sie die 1.Ableitung f'(x) und faktorisieren sie den Term.

Also ich muss ja hier die Produktregel , sowie die Kettenregel anwenden doch irgendwie komme ich auf kein annehmbares Ergebnis. Ich hoffe mir kann jemand bei der Aufgabe helfen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung einer e-Funktion: Deine Rechnung?
Status: (Antwort) fertig Status 
Datum: 17:44 Mi 04.02.2009
Autor: Loddar

Hallo sempel,

[willkommenmr] !!


Wie sehen denn Deine bisherigen Ergebnisse aus? Die entsprechenden Regeln, welche hier angewandt werden müssen, hast Du ja bereits richtig erkannt.


Gruß
Loddar


Bezug
                
Bezug
Ableitung einer e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:55 Mi 04.02.2009
Autor: sempel22

Naja also nach der Prdouktregel habe ich folgendes :
[mm] e^0,5x [/mm]  *  (x - 2)²  +  [mm] e^0,5x [/mm]  *  2  so und ab diesem punkt komme ich nicht weiter , also nach der Kettenregel muss ich ja noch mit 0,5 nachdifferenzieren oder?

Bezug
                        
Bezug
Ableitung einer e-Funktion: Korrektur
Status: (Antwort) fertig Status 
Datum: 18:22 Mi 04.02.2009
Autor: Loddar

Hallo sempel!


Richtig, beim ersten Term musst Du noch die innere Ableitung von [mm] $e^{0.5*x}$ [/mm] berücksichtigen.

Außerdem hast Du [mm] $(x-2)^2$ [/mm] falsch abgeleitet. Dies muss heißen:
[mm] $$\left[ \ (x-2)^2 \ \right]' [/mm] \ = \ [mm] 2*(x-2)^1*1 [/mm] \ = \ 2*(x-2)$$

Gruß
Loddar


Bezug
        
Bezug
Ableitung einer e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:01 Mi 04.02.2009
Autor: wunderbar

Also erst mal schritt für schritt, ich glaube du machst zu viel auf einmal.
Schreib doch erst mal auf was jeweils die Ableitungen von [mm] $e^{0,5 \, x}$ [/mm] und  von [mm] $(x-2)^2$ [/mm] ergeben. Da haben wir schon mit der Kettenregel genug zu tun und setzen die Ableitungen DANN in die Produktregel ein . Mit System zum Ziel ;-)

Gruß wunderbar

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de