www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Ableitung eines Integrals
Ableitung eines Integrals < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung eines Integrals: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:18 Di 29.06.2010
Autor: SnafuBernd

Aufgabe
Bestimmen Sie die Ableitung der Funktion [mm] f:\IR ->\IR [/mm] mit
f(x) = [mm] \integral_{x^2}^{x^4}{e^{x+t^2}dt} [/mm]

Hi,

da wir so eine ähnliche Aufgabe gerechnet haben, weiß ich das ich die Integralsgrenzen als Funktionen auffassen muss und dann das Integral als Komposition aufstellen:
Sei h(t) = [mm] e^{x+t^2}, [/mm] da h stetig ist gilt [mm] \exist [/mm] H(x) = [mm] \integral_{0}^{x}{e^{x+t^2} dt} [/mm]
sei g(x) = [mm] x^4 [/mm] so gilt:
H(g(x)) = [mm] \integral_{0}^{x^4}{e^{x+t^2} dt} [/mm]
hier schon mal die Frage ob das stimmt, weil ich ja in der Fkt. [mm] e^{x+t^2} [/mm] auch ein x habe, was eigentlich dann auch zu [mm] x^4 [/mm] würde,oder? Ansonsten würde ich so weiter machen:
H(g(x)) = (H°g)(x) => (H°g)'(x) = H'(g(x))g'(x) = (h°g)(x)g'(x), was ich dann ja aus rechnen könnte.
Das selbe würde ich dann für [mm] x^2(untere [/mm] Integralsgrenze) machen und dieses von dem 1. Ergebnis abziehen.

Mein Hauptproblem ist grad, wie das mit dem x in  [mm] e^{x+t^2} [/mm] im Integral H(g(x)) = [mm] \integral_{0}^{x^4}{e^{x+t^2} dt} [/mm]  mache

Snafu

        
Bezug
Ableitung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Di 29.06.2010
Autor: rainerS

Hallo!

> Bestimmen Sie die Ableitung der Funktion [mm]f:\IR ->\IR[/mm] mit
> f(x) = [mm]\integral_{x^2}^{x^4}{e^{x+t^2}dt}[/mm]
>  Hi,
>  
> da wir so eine ähnliche Aufgabe gerechnet haben, weiß ich
> das ich die Integralsgrenzen als Funktionen auffassen muss
> und dann das Integral als Komposition aufstellen:
>  Sei h(t) = [mm]e^{x+t^2},[/mm] da h stetig ist gilt [mm]\exist[/mm] H(x) =
> [mm]\integral_{0}^{x}{e^{x+t^2} dt}[/mm]
> sei g(x) = [mm]x^4[/mm] so gilt:
>  H(g(x)) = [mm]\integral_{0}^{x^4}{e^{x+t^2} dt}[/mm]
> hier schon mal die Frage ob das stimmt, weil ich ja in der
> Fkt. [mm]e^{x+t^2}[/mm] auch ein x habe, was eigentlich dann auch zu
> [mm]x^4[/mm] würde,oder? Ansonsten würde ich so weiter machen:
>  H(g(x)) = (H°g)(x) => (H°g)'(x) = H'(g(x))g'(x) =

> (h°g)(x)g'(x), was ich dann ja aus rechnen könnte.
>  Das selbe würde ich dann für [mm]x^2(untere[/mm] Integralsgrenze)
> machen und dieses von dem 1. Ergebnis abziehen.
>  
> Mein Hauptproblem ist grad, wie das mit dem x in  [mm]e^{x+t^2}[/mm]
> im Integral H(g(x)) = [mm]\integral_{0}^{x^4}{e^{x+t^2} dt}[/mm]  
> mache

Im vorliegenden Fall ist das ganz einfach, da [mm] $e^{x+t^2}=e^x*e^t^2$ [/mm] ist und du den ersten Faktor vor das Integral ziehen kannst.

Im allgemeinen Fall gilt die []Leibnizregel für Parameterintegrale.

Viele Grüße
   Rainer


Bezug
                
Bezug
Ableitung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:18 Di 29.06.2010
Autor: SnafuBernd

Hi,

da wir das Parameterintegral nach Leibniz nicht hatten, bezweifle ich, dass ich die Formel einfach benutzen kann.
Aber mit deinem Tipp ich ich doch sagen:
f(x) = [mm] \integral_{x^2}^{x^4}{e^{x+t^2} dt} =e^x \integral_{x^2}^{x^4}{e^{t^2} dt} [/mm] , mit F(x) = [mm] e^x\integral_{0}^{x}{e^{t^2} dt},g_1(x)=x^2,g_2(x) [/mm] = [mm] x^4 [/mm]
= [mm] F(g_2(x)) [/mm] - [mm] F(g_1(x)) [/mm] , jedoch habe ich hier immer noch das Problem, dass z.b. [mm] F(g_2(x)) [/mm] = [mm] e^{x^4}\integral_{0}^{x^4}{e^{t^2} dt} [/mm] und somit die Potenz beim Vorfaktor wieder nicht stimmt?

Snafu

Bezug
                        
Bezug
Ableitung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Di 29.06.2010
Autor: rainerS

Hallo!

> Hi,
>  
> da wir das Parameterintegral nach Leibniz nicht hatten,
> bezweifle ich, dass ich die Formel einfach benutzen kann.
>  Aber mit deinem Tipp ich ich doch sagen:
>  f(x) = [mm]\integral_{x^2}^{x^4}{e^{x+t^2} dt} =e^x \integral_{x^2}^{x^4}{e^{t^2} dt}[/mm]
> , mit F(x) = [mm]e^x\integral_{0}^{x}{e^{t^2} dt},g_1(x)=x^2,g_2(x)[/mm]
> = [mm]x^4[/mm]
>  = [mm]F(g_2(x))[/mm] - [mm]F(g_1(x))[/mm] , jedoch habe ich hier immer noch
> das Problem, dass z.b. [mm]F(g_2(x))[/mm] =
> [mm]e^{x^4}\integral_{0}^{x^4}{e^{t^2} dt}[/mm] und somit die Potenz
> beim Vorfaktor wieder nicht stimmt?

Nein, du darfst den Vorfaktor nicht in die Stammfunktion reinziehen:

[mm] F(x) := \integral_{0}^{x}{e^{t^2} dt} [/mm]

und

[mm] f(x) = e^x (F(g_2(x))-F(g_1(x))) [/mm]

Viele Grüße
   Rainer

Bezug
                                
Bezug
Ableitung eines Integrals: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Mi 30.06.2010
Autor: SnafuBernd

Hi,

somit hätte ich:
f(x) = [mm] \integral_{x^2}^{x^4}{e^{x+t^2} dt} =e^x \integral_{x^2}^{x^4}{e^{t^2} dt} [/mm]
Sei F(x) := [mm] \integral_{0}^{x}{e^{t^2} dt} [/mm] , F'(x) = [mm] e^{t^2} [/mm]
[mm] g_1(x) [/mm] = [mm] x^4 [/mm] , g'(x) = [mm] 4x^3 [/mm]
[mm] g_2(x) [/mm] = [mm] x^2 [/mm] , g'(x) = 2x
=> f(x) = [mm] e^x(F(g_1(x)) -F(g_2(x))) [/mm]
=> f'(x) = [mm] e^x(F(g_1(x)) -F(g_2(x))) [/mm] + [mm] e^x(F'(g_1(x))g_1'(x) -F'(g_2(x))g_2'(x)) [/mm]
             = f(x) + [mm] e^x(e^{x^8}4x^3 [/mm] - [mm] e^{x^4}2x) [/mm]

soweit richtig?

Snafu

Bezug
                                        
Bezug
Ableitung eines Integrals: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Mi 30.06.2010
Autor: MathePower

Hallo SnafuBernd,

> Hi,
>  
> somit hätte ich:
>  f(x) = [mm]\integral_{x^2}^{x^4}{e^{x+t^2} dt} =e^x \integral_{x^2}^{x^4}{e^{t^2} dt}[/mm]
>  
> Sei F(x) := [mm]\integral_{0}^{x}{e^{t^2} dt}[/mm] , F'(x) =
> [mm]e^{t^2}[/mm]
>  [mm]g_1(x)[/mm] = [mm]x^4[/mm] , g'(x) = [mm]4x^3[/mm]
>  [mm]g_2(x)[/mm] = [mm]x^2[/mm] , g'(x) = 2x
>  => f(x) = [mm]e^x(F(g_1(x)) -F(g_2(x)))[/mm]

> => f'(x) = [mm]e^x(F(g_1(x)) -F(g_2(x)))[/mm] +
> [mm]e^x(F'(g_1(x))g_1'(x) -F'(g_2(x))g_2'(x))[/mm]
> = f(x) + [mm]e^x(e^{x^8}4x^3[/mm] - [mm]e^{x^4}2x)[/mm]
>  
> soweit richtig?


Ja. [ok]


>  
> Snafu


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de