www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Ableitung im \IR^n
Ableitung im \IR^n < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung im \IR^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 So 22.05.2005
Autor: Shaguar

Moin,
diese Ableitungen machen wir doch zu schaffen aber ich meine das jetzt nach dem Studium von unzähligen Scripten verstanden zu haben.


Bestimmen sie die Ableitung von folgenden Funktionen:

1: [m]f: \IR^n \mapsto \IR v \mapsto v_{1}^{2}+....+v_{n}^{2}[/m]

So die Ableitung ist die Jacobi-Matrix der partiellen Ableitungen und die partiellen Ableitungen sehen ja alle so aus:
[m] \partial f_i=2v_i[/m] mit [m]1\le i \le n[/m]

Dann komme ich doch für f' auf folgende Matrix  [mm] \vektor{2v_1\\ \vdots \\ 2v_n} [/mm] oder?

2:
f: [m]\IR^n \times\IR^n \to \IR, (v,w) \mapsto = \summe_{i=1}^{n}v_i w_i[/m]

Die partiellen Ableitungen : [m] \partial f_i=w_i [/m] und [m] \partial f_i=v_i [/m] mit [m]1\le i \le n[/m]

Jacobi-Matrix: [mm] \pmat{ w_1 & v_1 \\ \vdots & \vdots \\ w_n & v_n } [/mm]


3:

f: [m]\IR^n \times\IR^n \to \IR, (v,w) \mapsto ^2[/m]

[m]^2=\summe_{i=1}^{n}v_i w_i \* \summe_{i=1}^{n}v_i w_i[/m]

So ist doch das Quadrat vom Skalarprodukt definiert oder? jetzt weiß ich leider nicht, wie ich die partiellen Ableitungen bestimmen soll ohne ein vorgegebenes n.


So ich hoffe mal dass ich alles richtig gemacht habe bis auf ein paar Ausdrucksfehler. Vielen Dank für eine Korrektur.

MFG Shaguar



        
Bezug
Ableitung im \IR^n: Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 18:48 So 22.05.2005
Autor: MathePower

Hallo Shaguar,

> 1: [m]f: \IR^n \mapsto \IR v \mapsto v_{1}^{2}+....+v_{n}^{2}[/m]
>  
> So die Ableitung ist die Jacobi-Matrix der partiellen
> Ableitungen und die partiellen Ableitungen sehen ja alle so
> aus:
>  [m]\partial f_i=2v_i[/m] mit [m]1\le i \le n[/m]
>
> Dann komme ich doch für f' auf folgende Matrix  
> [mm]\vektor{2v_1\\ \vdots \\ 2v_n}[/mm] oder?

das stimmt.


> 2:
>   f: [m]\IR^n \times\IR^n \to \IR, (v,w) \mapsto = \summe_{i=1}^{n}v_i w_i[/m]
>  
> Die partiellen Ableitungen : [m]\partial f_i=w_i[/m] und [m]\partial f_i=v_i[/m]
> mit [m]1\le i \le n[/m]
>
> Jacobi-Matrix: [mm]\pmat{ w_1 & v_1 \\ \vdots & \vdots \\ w_n & v_n }[/mm]
>  
>

Nach der Abbildungsvorschrift ist hier [mm] f = f(\;v_{1},;\cdots,\;v_{n},\;w_{1},\;\cdots,\;w_{n})[/mm]. Ist das so gemeint?


Gruß
MathePower

Bezug
                
Bezug
Ableitung im \IR^n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:25 So 22.05.2005
Autor: Shaguar

Moin Mathepower,
Danke erstmal für die schnelle Antwort.

Ich wollte ein wenig schreibarbeit sparen auf meinem Blatt sieht die 2 so aus:

f: [m]\IR^n \times\IR^n \to \IR, (v,w) \mapsto =v_1w_1+...+v_n w_n = \summe_{i=1}^{n}v_i w_i[/m]

und ich denke mal es ist so gemeint wie du das aufgeschrieben hast.

Und bei der 3. stellt sich halt die frage wie man eine partielle ableitung aussieht.

Bin jedenfalls froh, dass ich verstanden habe worum es geht...

MFG Shaguar

Bezug
                        
Bezug
Ableitung im \IR^n: Aufgabe 2,3)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:51 So 22.05.2005
Autor: MathePower

Hallo Shaguar,

> Ich wollte ein wenig schreibarbeit sparen auf meinem Blatt
> sieht die 2 so aus:
>  
> f: [m]\IR^n \times\IR^n \to \IR, (v,w) \mapsto =v_1w_1+...+v_n w_n = \summe_{i=1}^{n}v_i w_i[/m]

Dann sieht der Gradient von f so aus:

[mm]\nabla f\; = \;\left( {w_1 ,\; \cdots ,\;w_n ,\;v_1 ,\; \cdots ,\;v_n } \right)^T [/mm]

wobei [mm]\nabla f\; = \;\left( {\frac{{\delta f}} {{\delta v_1 }},\; \cdots ,\;\frac{{\delta f}} {{\delta v_n }},\;\frac{{\delta f}} {{\delta w_1 }},\; \cdots ,\;\frac{{\delta f}} {{\delta w_n }}} \right)^T [/mm]


> Und bei der 3. stellt sich halt die frage wie man eine
> partielle ableitung aussieht.

Da wendest Du die Kettenregel an:

[mm]\begin{gathered} f = \;g^{2} \hfill \\ g\; = \;\sum\limits_{i = 1}^{n} {v_{i} \;w_{i} } \hfill \\ \end{gathered} [/mm]

Dann gilt für die partiellen Ableitungen:

[mm]\frac{{\delta f}} {{\delta v_{i} }}\; = \;\frac{{df}} {{dg}}\;\frac{{\delta g}} {{\delta v_{i} }}[/mm]

Für die partiellen Ableitung nach [mm]w_{i}[/mm] entsprechend.

Dann gilt also insgesamt:

[mm]\nabla f\; = \;2\;g\;\nabla g[/mm]

Gruß
MathePower


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de