www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Ableitung in Banachräumen
Ableitung in Banachräumen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung in Banachräumen: Definintion
Status: (Frage) beantwortet Status 
Datum: 17:04 So 29.06.2008
Autor: Ninjoo

Wir haben in unserer VL gezeigt, dass für eine Abbildung f: X-->Y gilt(X,Y Banachräume):

f diffbar in [mm] x_{0} \gdw f(x)=f(x_{0}) +f'(x-x_{0}) [/mm] + [mm] r(x)*||x-x_{0}|| [/mm]

und  [mm] \limes_{x\rightarrow x_{0}} [/mm] r(x)=0

Dann gilt offenbar

[mm] f(x_{0}+h)=f(x_{0}) [/mm] +f'(h) + [mm] r(x_{0}+h)*||h|| [/mm] und  [mm] \limes_{h\rightarrow 0} r(x_{0}+h)=0 [/mm]

Mein Ana Tutor hat behaupted, das wäre dasselbe wie:

[mm] f(x_{0}+h)=f(x_{0}) [/mm] +f'(h) + r(h)*||h|| und [mm] \limes_{h\rightarrow 0} [/mm] r(h)=0

also wenn man das [mm] x_{0} [/mm] in r, weglässt. Kann mir das jemand erklären? Meint er eine andere funktion r? Ich verstehe nicht wieso das gelten sollte, allerdings ist es wichtig für einen Beweis den er gemacht hat, den ich leider in der Hausaufgabe so ähnlich brauche....

Würde mich freuen über Antworten! Danke

Gruss Ninjoo



        
Bezug
Ableitung in Banachräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 So 29.06.2008
Autor: Somebody


> Wir haben in unserer VL gezeigt, dass für eine Abbildung f:
> X-->Y gilt(X,Y Banachräume):
>  
> f diffbar in [mm]x_{0} \gdw f(x)=f(x_{0}) +f'(x-x_{0})[/mm] +
> [mm]r(x)*||x-x_{0}||[/mm]
>  
> und  [mm]\limes_{x\rightarrow x_{0}}[/mm] r(x)=0
>  
> Dann gilt offenbar
>
> [mm]f(x_{0}+h)=f(x_{0})[/mm] +f'(h) + [mm]r(x_{0}+h)*||h||[/mm] und  
> [mm]\limes_{h\rightarrow 0} r(x_{0}+h)=0[/mm]
>  
> Mein Ana Tutor hat behaupted, das wäre dasselbe wie:
>  
> [mm]f(x_{0}+h)=f(x_{0})[/mm] +f'(h) + r(h)*||h|| und
> [mm]\limes_{h\rightarrow 0}[/mm] r(h)=0
>  
> also wenn man das [mm]x_{0}[/mm] in r, weglässt. Kann mir das jemand
> erklären? Meint er eine andere funktion r?

Streng genommen ja. Er meint in seiner als äquivalent behaupteten Definition von "$f$ ist differenzierbar in [mm] $x_0$" [/mm] die Funktion [mm] $h\mapsto r(x_0+h)$. [/mm] Denn [mm] $x_0$ [/mm] ist ja festgehalten. Das heisst, man kann [mm] $r(x_0+h)$ [/mm] auch als eine Funktion von $h$ alleine auffassen: dass diese beiden Funktionen in beiden Definitionen den Namen $r$ erhalten haben, tut eigentlich nichts zur Sache, denn diese Funktion $r$ ist in beiden Defintionen "existenzquantifiziert" (es gibt eine Funktion $r$ mit [mm] $\ldots$). [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de