www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Ableitung und Nullstellen
Ableitung und Nullstellen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung und Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Mi 30.03.2011
Autor: GreenTreeTea

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,
Ich brauche dringende Hilfe bei meinen Hausaufgaben.
Eigentlich hab ich kaum Probleme damit, aber dieses Mal weiß ich echt nicht weiter.
folgendes:
[mm] f(x)=1/3x^4-4x^2+9 [/mm]

Davon soll ich die erste Ableitung machen.
Mein Ergebnis (nach den Regeln, die wir im Unterricht herausgefunden haben):
[mm] f'(x)=4/3x^3-8x [/mm]

Nun mein Problem: Wie kann ich jetzt weiter rechnen ?
Ich soll nun eig. mit "Sinnvollem Erraten" eine Nullstelle herausfinden, mit dieser dann Polynomdivision machen.
Jedoch weiß ich nicht, wie ich auf die Nullstelle komme. Schließlich steht am Ende kein Summand, von dem ich die Teiler, also die möglichen Nullstellen herausfinden kann.

Danke, für alle Hilfe, die ich bekomme!



        
Bezug
Ableitung und Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Mi 30.03.2011
Autor: kushkush

Hallo

Schreibe die Aufgabe hier rein!

Wenn du die Nullstelle der Ableitung willst,
klammere x aus und dann hast du eine Nullstelle.



Gruss
kushkush

Bezug
                
Bezug
Ableitung und Nullstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:11 Mi 30.03.2011
Autor: GreenTreeTea

Aufgabe
1. von [mm] f(x)=1/3x^4-4x^2+9 [/mm] die erste Ableitung f'(x) herausfinden
2. Nullstellen von f'(x) herausfinden
3. Vorzeichenfolge von f'(x) auf einen Zahlenstrahl darstellen
4. die lokalen und absoluten Hoch- und Tiefpunkte errechnen
5. f'(x) zeichnen

Leider hilft mir das nicht weiter.

Die erste Ableitung hab ich ja geschafft: [mm] f'(x)=4/3x^3-8x [/mm]
Wenn ich nun x ausklammere erhalte ich: [mm] f'(x)=x*(4/3x^2-8) [/mm]
Wenn ich jetzt jedoch meine erratenen Zahlen für x einsetze, wie wir das sonst immer gemacht haben, erhalte ich nie 0.
Bisher hatten wir noch nie so eine Aufgabe, bei der durch das Erraten keine Nullstelle herausgefunden werden konnte.

Wie erhalte ich nun die Nullstelle mit der ich weiter arbeiten kann?

Bezug
                        
Bezug
Ableitung und Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mi 30.03.2011
Autor: kushkush

Hallo


wenn du ausklammerst hast du in der Klammer eine quadratische Gleichung.


Gruss
kushkush

Bezug
                        
Bezug
Ableitung und Nullstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:37 Do 31.03.2011
Autor: fred97


> 1. von [mm]f(x)=1/3x^4-4x^2+9[/mm] die erste Ableitung f'(x)
> herausfinden
>  2. Nullstellen von f'(x) herausfinden
>  3. Vorzeichenfolge von f'(x) auf einen Zahlenstrahl
> darstellen
>  4. die lokalen und absoluten Hoch- und Tiefpunkte
> errechnen
>  5. f'(x) zeichnen
>  Leider hilft mir das nicht weiter.
>  
> Die erste Ableitung hab ich ja geschafft: [mm]f'(x)=4/3x^3-8x[/mm]
>  Wenn ich nun x ausklammere erhalte ich:
> [mm]f'(x)=x*(4/3x^2-8)[/mm]
>  Wenn ich jetzt jedoch meine erratenen Zahlen für x
> einsetze, wie wir das sonst immer gemacht haben, erhalte
> ich nie 0.
> Bisher hatten wir noch nie so eine Aufgabe, bei der durch
> das Erraten keine Nullstelle herausgefunden werden konnte.
>  
> Wie erhalte ich nun die Nullstelle mit der ich weiter
> arbeiten kann?

Siehst Du denn nicht, dass x=0 eine Nullstelle von  $ [mm] f'(x)=x\cdot{}(4/3x^2-8) [/mm] $ ist ??

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de