www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung von 1/cosh^2
Ableitung von 1/cosh^2 < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von 1/cosh^2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Mo 30.04.2012
Autor: helicopter

Aufgabe
Die Potentielle Energie eines Massenpunktes sei:
[mm]-U_0 \bruch{1}{\cosh^2 \bruch{x}{d}} [/mm] mit [mm]U_0>0[/mm]

1. Skizzieren Sie die potentielle Energie und die Kraft F. Wie verhalten sich
U(x) und F(x) für [mm]\left| \bruch{x}{d} \right|<<1[/mm]
Diskutieren Sie die Existenz und Lage der Umkehrpunkte der Bewegung.

Hallo,

ich sitz schon lange genug an der Aufgabe und krieg es einfach nicht hin,
die Funktion abzuleiten :( Ja ich weiß peinlich.

Ich hab schon versucht den cosh als e Funktionen zu schreiben aber auch da
komme ich nicht weiter.

Wäre toll wenn ihr mir helfen könntet,

danke im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung von 1/cosh^2: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Mo 30.04.2012
Autor: notinX

Hallo,

> Die Potentielle Energie eines Massenpunktes sei:
>  [mm]-U_0 \bruch{1}{\cosh^2 \bruch{x}{d}} [/mm] mit [mm]U_0>0[/mm]
>
> 1. Skizzieren Sie die potentielle Energie und die Kraft F.
> Wie verhalten sich
>  U(x) und F(x) für [mm]\left| \bruch{x}{d} \right|<<1[/mm]
>  
> Diskutieren Sie die Existenz und Lage der Umkehrpunkte der
> Bewegung.
>  Hallo,
>  
> ich sitz schon lange genug an der Aufgabe und krieg es
> einfach nicht hin,
>  die Funktion abzuleiten :( Ja ich weiß peinlich.

das muss Dir nicht peinlich sein.

>  
> Ich hab schon versucht den cosh als e Funktionen zu
> schreiben aber auch da
>  komme ich nicht weiter.

Das ist doch eine gute Idee. Wo kommst Du nicht weiter? Wie ist Dein Ansatz? Du musst die Kettenregel anwenden.
Präzisiere mal Dein Problem.

>  
> Wäre toll wenn ihr mir helfen könntet,
>  
> danke im Voraus.
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß,

notinX

Bezug
                
Bezug
Ableitung von 1/cosh^2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:24 Mo 30.04.2012
Autor: helicopter

Also ich habe zuerst die Definition benutzt
[mm] \cosh x = \bruch{1}{2}(e^x+e^-x)[/mm]

Ausmultipliziert komme ich auf [mm]\cosh^2 x = \bruch{e^2x + 2 + e^-2x}{4}[/mm]

Jetzt müsste ich ja den Kehrwert ableiten, und da weiß ich nicht weiter :(

Bezug
                        
Bezug
Ableitung von 1/cosh^2: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Mo 30.04.2012
Autor: Diophant

Hallo,

> Also ich habe zuerst die Definition benutzt
> [mm]\cosh x = \bruch{1}{2}(e^x+e^-x)[/mm]
>
> Ausmultipliziert komme ich auf [mm]\cosh^2 x = \bruch{e^2x + 2 + e^-2x}{4}[/mm]
>
> Jetzt müsste ich ja den Kehrwert ableiten, und da weiß
> ich nicht weiter :(

das ist doch viel zu kompliziert. Nutze

(cosh(x))'=sinh(x)

sowie Ketten- und Quotientenregel. Wenn du es ein wenig geschickt anstellst, reicht sogar die Kettenregel alleine aus.


Gruß, Diophant

Bezug
                                
Bezug
Ableitung von 1/cosh^2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:40 Mo 30.04.2012
Autor: helicopter

Wie meinst du das mit Produkt und Quotientenregel,
Auseinanderziehen und dann mit den beiden Regeln ableiten?
Also [mm]\bruch{1}{\cosh x} * \bruch{1}{\cosh x}[/mm] ?

Bezug
                                        
Bezug
Ableitung von 1/cosh^2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:00 Mo 30.04.2012
Autor: helicopter

Ich komme auf [mm] \bruch{-1}{\cosh^2 \bruch{x}{d}} [/mm]
Also selbe Funktion nur [mm] U_0 [/mm] ist weg, das ist falsch oder?

Bezug
                                                
Bezug
Ableitung von 1/cosh^2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:59 Di 01.05.2012
Autor: helicopter

OK, habe meinen Fehler gefunden, habe nun
[mm]\bruch{2*U_0*\sinh (\bruch{x}{d})}{d*\cosh^3 (\bruch{x}{d})}[/mm] raus.

Vielen Dank

Bezug
                                                        
Bezug
Ableitung von 1/cosh^2: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Di 01.05.2012
Autor: Diophant

Hallo,

> OK, habe meinen Fehler gefunden, habe nun
> [mm]\bruch{2*U_0*\sinh (\bruch{x}{d})}{d*\cosh^3 (\bruch{x}{d})}[/mm]
> raus.
>
> Vielen Dank

das ist richtig.


Gruß, Diophant



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de