www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematica" - Ableitung von FindMinimum
Ableitung von FindMinimum < Mathematica < Mathe-Software < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von FindMinimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Do 03.04.2008
Autor: Frucht

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo zusammen,

ich fange gerade an mit Mathematica zu arbeiten und bleibe bei folgendem Problem stecken. Ich möchte eine FindMinimum-Funktion ableiten. Die Funktion sieht aus wie folgt:
First[FindMinimum[{Sqrt[
    [mm] a^2 [/mm] 0.1045'^2 + [mm] b^2 [/mm] 0.0289'^2 + [mm] c^2 [/mm] 0.3461'^2 + [mm] d^2 [/mm] 0.111'^2 +
     [mm] e^2 [/mm] 0.0373'^2 + [mm] f^2 [/mm] 0.0676'^2 + 2 a b 0.1045' 0.0289' (-0.15') +
     2 a c 0.1045' 0.3461' (-0.57') + 2 a d 0.1045' 0.111' 0.08' +
     2 a e 0.1045' 0.0373' 0.53' + 2 a f 0.1045' 0.0676' 0.47' +
     2 b c 0.0289' 0.3461' 0.04' + 2 b d 0.0289' 0.111' 0.09' +
     2 b e 0.0289' 0.0373' 0.23' + 2 b f 0.0289' 0.0676' 0.2' +
     2 c d 0.3461' 0.111' (-0.15') + 2 c e 0.3461' 0.0373' (-0.41') +
     2 c*f 0.3461' 0.0676' (-0.42') + 2 d e 0.111' 0.0373' 0.5' +
     2 d f 0.111' 0.0676' 0.45' + 2 e f 0.0373' 0.0676' 0.75],
   a 0.1216' + b 0.0127' + c (-0.1818') + d 0.0961' + e 0.0285' +
     f 0.0464' == x, a >= 0, b >= 0, c >= 0, d >= 0, e >= 0, f >= 0,
   a + b + c + d + e + f == 1}, {a, b, c, d, e, f}]]

Zu beachten ist eigentlich nur, dass First[] das Ergebnis der Funktion abliest (und nicht a,b,c etc). Außerdem hat die Funktion einige Nebenbedingungen. Letztlich möchte ich die Funktion nach x Ableiten (siehe erste Nebenbedingung),
Ich habe probiert ND anzuwenden, das hat leider nicht geklappt.
Es wäre super, wenn ihr etwas darüber wüsstest.

Viele Grüße,
Frucht

        
Bezug
Ableitung von FindMinimum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 Do 03.04.2008
Autor: Frucht

Wahrscheinlich ist die Ableitung nicht als Funktion darstellbar.
Eine numerische Ableitung genügt aber vollkommen.

Bezug
        
Bezug
Ableitung von FindMinimum: In Version 5,2 geht's so:
Status: (Antwort) fertig Status 
Datum: 20:24 Fr 11.04.2008
Autor: Peter_Pein

Hallo,

deine Verwendung von FindMinimum deutet auf Mathematica Version 6 hin. Ich habe zur Zeit nur 5.2 zur Verfügung:
1: In[8]:=
2: f[x_] := First[NMinimize[{Sqrt[a^2*0.1045^2 + b^2*0.0289^2 + 
3:        c^2*0.3461^2 + d^2*0.111^2 + e^2*0.0373^2 + 
4:        f^2*0.0676^2 + 2*a*b*0.1045*0.0289*-0.15 + 
5:        2*a*c*0.1045*0.3461*-0.57 + 2*a*d*0.1045*0.111*0.08 + 
6:        2*a*e*0.1045*0.0373*0.53 + 2*a*f*0.1045*0.0676*0.47 + 
7:        2*b*c*0.0289*0.3461*0.04 + 2*b*d*0.0289*0.111*0.09 + 
8:        2*b*e*0.0289*0.0373*0.23 + 2*b*f*0.0289*0.0676*0.2 + 
9:        2*c*d*0.3461*0.111*-0.15 + 2*c*e*0.3461*0.0373*-0.41 + 
10:        2*c*f*0.3461*0.0676*-0.42 + 2*d*e*0.111*0.0373*0.5 + 
11:        2*d*f*0.111*0.0676*0.45 + 2*e*f*0.0373*0.0676*0.75], 
12:      a*0.1216 + b*0.0127 + c*-0.1818 + d*0.0961 + e*0.0285 + 
13:         f*0.0464 == x && a >= 0 && b >= 0 && c >= 0 && 
14:       d >= 0 && e >= 0 && f >= 0 && a + b + c + d + e + f == 
15:        1}, {a, b, c, d, e, f}]]
16: In[9]:=
17: df[x_, h_:10^(-4)] := (f[x + h] - f[x - h])/(2*h)
18: In[11]:=
19: Plot[df[x], {x, 0, 1/10}]

[Dateianhang nicht öffentlich]

scheint zu klappen.

Gruß,
Peter


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Ableitung von FindMinimum: Vielen Dank
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:37 Di 15.04.2008
Autor: Frucht

Vielen Dank für deine Hilfe!

Beste Grüße,
Frucht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematica"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de