www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung von arctan
Ableitung von arctan < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von arctan: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:44 Do 06.02.2014
Autor: Bindl

Aufgabe
Berechnen Sie die Ableitungsfunktion von
g(x) = [mm] arctan(\bruch{sin(2x)}{cos(2x)}) [/mm]
mit [mm] ]-\pi/4 [/mm] ; [mm] \pi/4[ [/mm] -> [mm] \IR [/mm]



Hi zusammen,

ich habe hier ein Problem mit der Bestimmung der Ableitung.
Ich weiß dann arctan(x) = 1 / [mm] (1+x^2) [/mm] ist.

Jetzt hier was ich bisher habe:
g'(x) = [mm] \bruch{\bruch{2cos(2x)*cos(2x)-sin(2x)*(-2sin(2x))}{(cos(x))^2}}{?} [/mm] * x + [mm] arctan(\bruch{sin(2x)}{cos(2x)}) [/mm] * 1

Also beim ? habe ich ja normal [mm] "1+x^2". [/mm]
Bei einem Bruch bei hier weiß ich jedoch nicht weiter.

Ist mein Ansatz richtig und wie muss ich beim ? vorgehen ?

        
Bezug
Ableitung von arctan: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Do 06.02.2014
Autor: M.Rex

Hallo

Bedenke, dass [mm] \frac{\sin(x)}{\cos(x)}=\tan(x) [/mm]

Damit vereinfacht sich die Funktion doch fundamental.

Marius

Bezug
                
Bezug
Ableitung von arctan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:34 Do 06.02.2014
Autor: Bindl

Hi,
danke für den Hinweis.

Dann habe ich folgendes:
g`(x) = [mm] \bruch{\bruch{2}{(cos(x))^2}}{?} [/mm] * x + arctan(tan(2x)) * 1

Für ? habe ich mir folgendes überlegt:
Wenn aus 1x -> [mm] 1+x^2 [/mm] wird
dann könnte aus 1tan(2x) -> 1 + [mm] (2tan(2x))^2 [/mm] werden.

Habe ich das richtig gemacht ?

Bezug
                        
Bezug
Ableitung von arctan: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Do 06.02.2014
Autor: M.Rex


> Hi,
> danke für den Hinweis.

>

> Dann habe ich folgendes:
> g'(x) = [mm]\bruch{\bruch{2}{(cos(x))^2}}{?}[/mm] * x +
> arctan(tan(2x)) * 1

>

> Für ? habe ich mir folgendes überlegt:
> Wenn aus 1x -> [mm]1+x^2[/mm] wird
> dann könnte aus 1tan(2x) -> 1 + [mm](2tan(2x))^2[/mm] werden.

>

> Habe ich das richtig gemacht ?

Das ist immer noch viel zu kompliziert, fasse g(x) mal komplett zusammen.

Marius

Bezug
                                
Bezug
Ableitung von arctan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:54 Do 06.02.2014
Autor: Bindl

Hi,

also ich habe g(x) = arctan(tan(2x)) * x
Wie kann ich dass jetzt noch weiter zusammen fassen ?
Mir fällt da wahrlich nichts ein was ich da noch machen kann.

Bezug
                                        
Bezug
Ableitung von arctan: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Do 06.02.2014
Autor: MathePower

Hallo BIndl,


> Hi,
>  
> also ich habe g(x) = arctan(tan(2x)) * x
>  Wie kann ich dass jetzt noch weiter zusammen fassen ?
>  Mir fällt da wahrlich nichts ein was ich da noch machen
> kann.


Wenn das Argument des arctan der Tangens ist,
dann ergibt das die Identität.

Demnach:

[mm]arctan(tan(z))=z[/mm]


Gruss
MathePower


Bezug
                                                
Bezug
Ableitung von arctan: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Do 06.02.2014
Autor: Bindl

Hi,

das habe ich vorher noch nie gesehen.
Ich rechne das dann gleich mal durch.

Bezug
                                                
Bezug
Ableitung von arctan: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Do 06.02.2014
Autor: Bindl

Hi nochmal,
also habe ich dann folgendes:
g(x) = arctan(tan(2x)) * x = 2x * x = [mm] 2x^2 [/mm]
g`(x) = 4x

Ist das korrekt ?

Ich gehe mal davon aus das,
arcsin(sin(x)) = x   &
arccos(sin(x)) = x

Ist das richtig ?

Bezug
                                                        
Bezug
Ableitung von arctan: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Do 06.02.2014
Autor: Richie1401

Hallo,

> Hi nochmal,
>  also habe ich dann folgendes:
>  g(x) = arctan(tan(2x)) * x = 2x * x = [mm]2x^2[/mm]

Woher nimmst du denn den Faktor $x$ ?


Es ist doch  g(x)=arctan(tan(2x))=2x

>  g'(x) = 4x
>  
> Ist das korrekt ?
>  
> Ich gehe mal davon aus das,
>  arcsin(sin(x)) = x   &
>  arccos(sin(x)) = x
>  
> Ist das richtig ?


Bezug
                                                                
Bezug
Ableitung von arctan: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Do 06.02.2014
Autor: Bindl

Hi,
bei der ursprünglichen Aufgabenstellung war noch ein "*x" dabei.
Das habe ich, wie ich gerade sehe, vergessen mit aufzuschreiben.
Sorry !!!


Bezug
                                                                        
Bezug
Ableitung von arctan: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Do 06.02.2014
Autor: Richie1401

Ok, dann stimmts natürlich. :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de