www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung von einem Bruch
Ableitung von einem Bruch < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von einem Bruch: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:03 So 18.10.2009
Autor: lowskilled

Aufgabe
Ermitteln Sie die erste Ableitung der folgenden Funktion:

f(x) = [mm] \bruch{3x-6}{(5-2x)^2} [/mm]

Hallo ich habe ein BWL-Studium angefangen und blicke schon nach der ersten Woche in Mathe nicht mehr komplett durch. Ich hoffe ich bin im richtigen Unterfourm gelandet.

Also mit Hilfe der Quotientenregel kommen ich auf folgendes Ergebnis:

f'(x) = [mm] \bruch{3*(5-2x)^2 - (3x-6)*(8x-20)}{(5-2x)^4} [/mm]

Wenn ich den Zähler jetzt noch ausmultiplizer und zusammenfasse komme ich auf folgendes Ergebnis:

f'(x) = [mm] \bruch{-12x^2+48x-45}{(5-2x)^4} [/mm]

Lösung soll jedoch folgendes sein:

f'(x) = [mm] \bruch{6x-9}{(5-2x)^3} [/mm]

Da der Nenner von meiner Ableitung und der Lösung fast der gleiche ist (nur eine Potenz kleiner), vermute ich, dass ich das Ganze irgendwie kürzen muss. In meiner ersten Ableitung ist die (5-2x) ja auch vorhanden. Allerdings ist das ganze eine Differenz in der ich nicht kürzen darf.

1. Frage: sind meine Ableitungen soweit richtig?
2. Frage: komme ich auf die Lösung indem ich kürze?
3. Frage: wenn ja, wie klammer ich den Zähler richtig aus (damit hatte ich schon immer Probleme) um kürzen zu können?

Sofern ich völlig falsch liege bin ich für jeden Tipp sehr dankbar.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ableitung von einem Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 09:42 So 18.10.2009
Autor: steppenhahn

Hallo!


> Ermitteln Sie die erste Ableitung der folgenden Funktion:
>  
> f(x) = [mm]\bruch{3x-6}{(5-2x)^2}[/mm]
>  Hallo ich habe ein BWL-Studium angefangen und blicke schon
> nach der ersten Woche in Mathe nicht mehr komplett durch.
> Ich hoffe ich bin im richtigen Unterfourm gelandet.
>  
> Also mit Hilfe der Quotientenregel kommen ich auf folgendes
> Ergebnis:
>  
> f'(x) = [mm]\bruch{3*(5-2x)^2 - (3x-6)*(8x-20)}{(5-2x)^4}[/mm]
>  
> Wenn ich den Zähler jetzt noch ausmultiplizer und
> zusammenfasse komme ich auf folgendes Ergebnis:
>  
> f'(x) = [mm]\bruch{-12x^2+48x-45}{(5-2x)^4}[/mm]
>  
> Lösung soll jedoch folgendes sein:
>  
> f'(x) = [mm]\bruch{6x-9}{(5-2x)^3}[/mm]
>  
> Da der Nenner von meiner Ableitung und der Lösung fast der
> gleiche ist (nur eine Potenz kleiner), vermute ich, dass
> ich das Ganze irgendwie kürzen muss. In meiner ersten
> Ableitung ist die (5-2x) ja auch vorhanden. Allerdings ist
> das ganze eine Differenz in der ich nicht kürzen darf.
>  
> 1. Frage: sind meine Ableitungen soweit richtig?

Deine Ableitung hast du richtig berechnet [ok].

>  2. Frage: komme ich auf die Lösung indem ich kürze?

[ok] Genau. Allerdings ist es schwer, bei deiner Endform f'(x) = [mm]\bruch{-12x^2+48x-45}{(5-2x)^4}[/mm] der Ableitung noch zu kürzen. Du musst, wenn du die Quotientenregel anwendest und der Nenner schon eine Potenz > 1 hat, schon während des Zusammenfassens kürzen!

>  3. Frage: wenn ja, wie klammer ich den Zähler richtig aus
> (damit hatte ich schon immer Probleme) um kürzen zu
> können?

Ich zeig es dir:

f'(x) = [mm]\bruch{3*\red{(5-2x)}^2 - (3x-6)*2*\red{(5-2x)}*(-2)}{(5-2x)^4}[/mm]

An dieser Stelle, wo du nur die Quotientenregel angewendet hast, kannst du es besser sehen, was man kürzen kann: In jedem Summanden des Zählers tritt ein (5-2x) als Faktor auf, das kannst du nun ausklammern:

f'(x) = [mm]\bruch{(5-2x)*\Big(3*(5-2x) - (3x-6)*2*(-2)\Big)}{(5-2x)^4}[/mm]

Und nun mit dem Nenner kürzen:

f'(x) = [mm]\bruch{3*(5-2x) - (3x-6)*2*(-2)}{(5-2x)^3}[/mm]

Nun kommst du auf das richtige, gekürzte Ergebnis :-)

Grüße,
Stefan

Bezug
                
Bezug
Ableitung von einem Bruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:33 So 18.10.2009
Autor: lowskilled

So ähnlich hatte ich mir das auch gedacht. Nur seh ich meistens nicht wo ich am einfachsten ausklammern muss.

Vielen Dank für die schnelle Antwort.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de