www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitung von tan(x)
Ableitung von tan(x) < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitung von tan(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 So 05.12.2010
Autor: dreamweaver

Aufgabe
Berechnen Sie mit Hilfe des Differenzenquotienten die Ableitung von tan(x).

Hallo,
die Aufgabe löst man doch mit der Form [mm] \limes_{h\rightarrow\0} \bruch{f(x+h) - f(x)}{h} [/mm] oder täusche ich mich?

lim h -> 0
wird leider nicht angezeigt.

Dann setze ich ein und komme auf folgende Resultate:

[mm] \limes_{h\rightarrow\0} \bruch{tan(x+h) - tan(x)}{h} [/mm]

[mm] \limes_{h\rightarrow\0} \bruch{\bruch{sin(x+h)}{cos(x+h)} - \bruch{sin(x)}{cos(x)}}{h} [/mm]

[mm] \limes_{h\rightarrow\0} \bruch{sin(x+h)\cdot{}cos(x) - cos(x+h)\cdot{}sin(x)}{cos(x+h)\cdot{}cos(x)\cdot{}h} [/mm]

Aber wie gehts jetzt weiter?
Kann mir bitte jemand einen Tipp geben?
Muss ich das sin(x+h) und cos(x+h) mit den Additionstheoremen weiter aufsplitten?

Lg

        
Bezug
Ableitung von tan(x): Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 So 05.12.2010
Autor: reverend

Hallo dreamweaver,

> Berechnen Sie mit Hilfe des Differenzenquotienten die
> Ableitung von tan(x).
>  Hallo,
>  die Aufgabe löst man doch mit der Form
> [mm]\limes_{h\rightarrow 0} \bruch{f(x+h) - f(x)}{h}[/mm] oder
> täusche ich mich?

Alles richtig.

> lim h -> 0
>  wird leider nicht angezeigt.

Ich habe mal den Backslash vor der Null gelöscht. Dann wird sie auch richtig interpretiert.

> Dann setze ich ein und komme auf folgende Resultate:
>  
> [mm]\limes_{h\rightarrow\0} \bruch{tan(x+h) - tan(x)}{h}[/mm]
>  
> [mm]\limes_{h\rightarrow\0} \bruch{\bruch{sin(x+h)}{cos(x+h)} - \bruch{sin(x)}{cos(x)}}{h}[/mm]
>  
> [mm]\limes_{h\rightarrow\0} \bruch{sin(x+h)\cdot{}cos(x) - cos(x+h)\cdot{}sin(x)}{cos(x+h)\cdot{}cos(x)\cdot{}h}[/mm]
>  
> Aber wie gehts jetzt weiter?
>  Kann mir bitte jemand einen Tipp geben?
>  Muss ich das sin(x+h) und cos(x+h) mit den
> Additionstheoremen weiter aufsplitten?

Ja!

Alternativ könntest Du aber auch zur Arbeitsersparnis folgendes Additionstheorem benutzen:

[mm] \tan{(x+h)}=\bruch{\tan{x}+\tan{h}}{1-\tan{x}\tan{h}} [/mm]

Das findest Du in Formelsammlungen, z.B. []hier.

Grüße
reverend


Bezug
                
Bezug
Ableitung von tan(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 So 05.12.2010
Autor: dreamweaver

Ah danke stimmt, mit diesem Additionstheorem könnte ich das auch machen.

Jetzt hab ich aber mit dem anderen weitergerechnet.

Also ich habe die Additionstheoreme angewandt, ausmultipliziert und ausgerechnet, dann komm ich auf folgende Form:

[mm] \limes_{h\rightarrow0}\bruch{cos(x)^{2}\cdot{}sin(h) + sin(x)^{2}\cdot{}sin(h)}{cos(x)^{2}\cdot{}cos(h)\cdot{}h - sin(x)\cdot{}sin(h)\cdot{}cos(x)\cdot{}h} [/mm]

Wie kann ich dass jetzt weiter vereinfachen?
Gibts da wieder ein Additionstheorem das ich nicht kenne?

Lg

Bezug
                        
Bezug
Ableitung von tan(x): Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 So 05.12.2010
Autor: reverend

Hallo nochmal,

> Also ich habe die Additionstheoreme angewandt,
> ausmultipliziert und ausgerechnet, dann komm ich auf
> folgende Form:
>  
> [mm]\limes_{h\rightarrow0}\bruch{cos(x)^{2}\cdot{}sin(h) + sin(x)^{2}\cdot{}sin(h)}{cos(x)^{2}\cdot{}cos(h)\cdot{}h - sin(x)\cdot{}sin(h)\cdot{}cos(x)\cdot{}h}[/mm]
>  
> Wie kann ich dass jetzt weiter vereinfachen?
>  Gibts da wieder ein Additionstheorem das ich nicht kenne?

Nö. Ausklammern. Zähler: trigonometrischer Pythagoras. Nenner: schon angewandtes Additionstheorem mal rückwärts anwenden. Wenn ich nicht irre, dann noch de l'Hôpital (auch in anderer Namenszitation in Umlauf), fertig.

Hm. Werde wortkarg. Pardon.

;-)
reverend


Bezug
                                
Bezug
Ableitung von tan(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Mi 08.12.2010
Autor: dreamweaver

Danke für deine Hilfe!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de