www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungen
Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 Mi 24.10.2007
Autor: espritgirl

Hallo Zusammen [winken],

Ich habe ein paar Aufgaben, deren erste und zweite Ableitung ich bilen soll, ich jedoch nicht weiß, wie.

1) [mm] (x-1)^{2} [/mm]
---> ist ja eine binomische Formel und man könnte ja auch schreiben (x-1)*(x-1), wenn ich dies ableite, da kommt aber wieder das gleiche raus. Stimmt das Vorgehen?

2) [mm] (8x^{2}-5x+7)*(4x^{7}-3x^{4}+2x) [/mm]
-> hier bilde ich mit der Prduktregel die erste Aböleitung, dann hat man da ja u`*v+u*v` stehen, kann man davon dann direkt die 2. Ableitung bilden, indem man doppelt die Produktregel anwendet? Also
[mm] u`_{1}*v_{1}+u_{1}*v`_{1}+u`_{2}*v_{2}+u_{2}*v`_{2} [/mm]
Wir müssen die Ableitungen bilden, ohne vorher auszumultiplizieren.

LG

Sarah

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Mi 24.10.2007
Autor: Somebody


> Hallo Zusammen [winken],
>  
> Ich habe ein paar Aufgaben, deren erste und zweite
> Ableitung ich bilen soll, ich jedoch nicht weiß, wie.
>  
> 1) [mm](x-1)^{2}[/mm]
>  ---> ist ja eine binomische Formel und man könnte ja auch

> schreiben (x-1)*(x-1), wenn ich dies ableite, da kommt aber
> wieder das gleiche raus. Stimmt das Vorgehen?

Das Vorgehen (Berechnen der Ableitung von [mm] $(x-1)^2$, [/mm] indem man die Produktregel auf [mm] $(x-1)\cdot [/mm] (x-1)$ anwendet) stimmt schon: nur solltest Du nicht dasselbe erhalten:
[mm]\big((x-1)\cdot (x-1)\big)'=1\cdot (x-1)+(x-1)\cdot 1 = 2x-2=2(x-1)[/mm]
Ist also nicht dasselbe (wie [mm] $(x-1)^2$). [/mm]

>  
> 2) [mm](8x^{2}-5x+7)*(4x^{7}-3x^{4}+2x)[/mm]
>  -> hier bilde ich mit der Prduktregel die erste

> Aböleitung, dann hat man da ja u'*v+u*v' stehen, kann man
> davon dann direkt die 2. Ableitung bilden, indem man
> doppelt die Produktregel anwendet? Also
>  [mm]u'_{1}*v_{1}+u_{1}*v'_{1}+u'_{2}*v_{2}+u_{2}*v'_{2}[/mm]

Ich verstehe leider nicht, welche Bedeutung aus Deiner Sicht diesen Indizes 1 bzw. 2 zukommt.

>  Wir müssen die Ableitungen bilden, ohne vorher
> auszumultiplizieren.

Ja, wenn ihr dies machen müsst, dann wirst Du die Produktregel zur Berechung der zweiten Ableitung also auf die beiden Teilprodukte [mm] $u'\cdot [/mm] v$ und [mm] $u\cdot [/mm] v'$ der ersten Ableitung nochmals anwenden müssen. Dies ergibt aber:
[mm](u\cdot v)''=(\blue{u'\cdot v}+\green{u\cdot v'})'=\blue{u''v+u'v'}+\green{u'v'+uv''}=u''v+2u'v'+uv''[/mm]
Sieht beinahe ein wenig "binomisch" aus, findest Du nicht auch?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de