www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Ableitungen
Ableitungen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Do 03.01.2008
Autor: Tigerbaby001

Aufgabe
Ableitungen zu [mm] x^2+\bruch{2}{x} [/mm]

Könnt ihr mir mal bitte sagen, ob meine Ableitungen so korrekt sind.

f(x)= [mm] x^2+\bruch{2}{x} [/mm]
f´(x)= [mm] 2x-\bruch{2}{x^2} [/mm]
f´´(x)= [mm] 2+\bruch{4x}{x^4} [/mm]
f´´´(x)= [mm] -\bruch{12x^4}{x^8} [/mm]

Stimmt das so?

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Do 03.01.2008
Autor: Tyskie84

Hallo!

Alle Ableitungen sind korrekt [daumenhoch]
Aber eine Sache würde ich bemängeln: In der 2. Ableitung und 3. Ableitung kann man doch im bruch kürzen. mach das mal. Sonst ist alles ok. Beachte!!! Vereinfache so weit wie möglich da dann die nachsten Ableitungen sehr viel einfacher sind.

[cap] Gruß

Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:11 Do 03.01.2008
Autor: Tigerbaby001

Danke... ich zweifel gerade an meinem Verstand.. habe mir das Schaubild mal vom Taschenrechner und vom Matheprogramm zeichnen lassen.... hier sehe ich, dass ein Schnittpunkt mit der x-Achse bei etwa -1.2599/0 sein muss... hier liegt auch mein Wendepunkt... jedenfalls fällt der fast auf den Schnittpunkt mit der Achse... Jetzt wollte ich den Schnittpunkt noch berechnen.. also f(x)=0
f(x)= [mm] x^2+\bruch{2}{x}... [/mm] aber wenn ich das auflöse, kommt bei mir nicht der Wert raus der rauskommen soll....

Ich dreh durch.....

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:22 Do 03.01.2008
Autor: Tyskie84

Hallo!

Ganz ruhig nicht durchdrehen ;-)

Es ist vollkommen korrekt was dein Taschenrechner und dein Programm sagt
Schau:
[mm] f(x)=x²+\bruch{2}{x} [/mm]
f(x)=0
[mm] \Rightarrow x²+\bruch{2}{x}=0 [/mm]
[mm] \Rightarrow x²=-\bruch{2}{x} [/mm] |*x
[mm] \Rightarrow [/mm] x³=-2
Jetzt die dritte Wurzel aus -2 ziehen :-)
[mm] x=\wurzel[3]{-2} [/mm] = -1,25992105

[cap] Gruß



Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Do 03.01.2008
Autor: Tigerbaby001

tatata... danke schön... dachte schon ich spinn....

bin gerade noch an den Asymptoten.. ich weiß, dass ich bei der senkrechten Asymptote den Nenner = 0 setzte....  
was nehme ich dann hier als Nenner? Nur x oder 1+x?

Und bei der waagrechten Asymptote? Gibt es überhaupt eine? Denn eigentlich ist doch der Polynomgrad von Zähler und Nenner unterschiedlich oder? Im Nenner 1 größer als im Zähler bedeutet doch schräge Asymptote, richtig? Dann muss ich diese doch durch Polynomdivision berechnen....

Bezug
                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 Do 03.01.2008
Autor: Kroni


> tatata... danke schön... dachte schon ich spinn....
>  
> bin gerade noch an den Asymptoten.. ich weiß, dass ich bei
> der senkrechten Asymptote den Nenner = 0 setzte....  
> was nehme ich dann hier als Nenner? Nur x oder 1+x?

Hi,

deine Definitionslücke liegt ja nur bei x=0, also musst du dann einfach mal x gegen Null gehen lassen. Was dann bei x rauskommt weist du. Was bei 2/x dann rauskommt, wenn du dich von links und von rechts näherst.

>
> Und bei der waagrechten Asymptote? Gibt es überhaupt eine?

Nun, bei ganzrationale Funktionen gibt es manchmal welche. Wenn der Zählergrad kleiner ist als de rNennergrad, dann geht das ganze gegen Null, wenn x gegen unendlich. Wenn Zähler und Nennergrad gleich, gibt es eine waagerechte. Wenn Zählergrad um eins größer als Nenner, dann gibt es eine schräge.

> Denn eigentlich ist doch der Polynomgrad von Zähler und
> Nenner unterschiedlich oder? Im Nenner 1 größer als im
> Zähler bedeutet doch schräge Asymptote, richtig?

Ja.
>Dann muss

> ich diese doch durch Polynomdivision berechnen....

Du kannst auch einfach deinen kompletten Funktionsterm durch das x mit der höchsten Potenz teilen. Dann kannst du x gegen unendlich gehen lassen, ud dann sieht man, wogegen sich deine ganzrat. Funktion nähert. Dazu brauchst du eg. keine Polynomdivison.

LG

Kroni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de