www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Ableitungen
Ableitungen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 12:46 Mo 12.01.2009
Autor: mathegenie84

Aufgabe
f(x)= [mm] x^{2} (5-7x)^{3} [/mm]

Mit der Ketten und Produktregel sollen wir die 1. Ableitung bilden.
Die beiden Regeln sind anfürsich kein Problem.
Das Problem liegt darin, dass ich mir nicht sicher bin was mein u(x) und mein v(x) jeweils ist. Und dannach weiß ich auch nicht wirklich wie ich das zusammensetzen soll.

Mein Vorschlag:
u(x)= [mm] x^{2} [/mm]     u´(x)= 2x
v(x) = [mm] (5-7x)^{3} [/mm]   v´(x)= [mm] -21*(5-7x)^{2} [/mm]  

Kann mir wohl jemand auf die Sprünge helfen??

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Mo 12.01.2009
Autor: fred97


> f(x)= [mm]x^{2} (5-7x)^{3}[/mm]
>  Mit der Ketten und Produktregel
> sollen wir die 1. Ableitung bilden.
>  Die beiden Regeln sind anfürsich kein Problem.
>  Das Problem liegt darin, dass ich mir nicht sicher bin was
> mein u(x) und mein v(x) jeweils ist. Und dannach weiß ich
> auch nicht wirklich wie ich das zusammensetzen soll.
>  
> Mein Vorschlag:
>  u(x)= [mm]x^{2}[/mm]     u´(x)= 2x
>  v(x) = [mm](5-7x)^{3}[/mm]   v´(x)= [mm]-21*(5-7x)^{2}[/mm]  
>

Das ist doch in Ordnung. Jetzt Produktregel

FRED



> Kann mir wohl jemand auf die Sprünge helfen??


Bezug
                
Bezug
Ableitungen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:07 Mo 12.01.2009
Autor: mathegenie84

Aufgabe
siehe oben

Das heißt ich hätte dann:

f´(x)= 2x * [mm] (5-7x)^{3} [/mm] - [mm] 21x^{2} *(5-7x)^{2} [/mm]

kann ich dass dann noch irgendwie zusammenfassen???

Bezug
                        
Bezug
Ableitungen: ausklammern
Status: (Antwort) fertig Status 
Datum: 13:11 Mo 12.01.2009
Autor: Roadrunner

Hallo Mathegenie!


> f´(x)= 2x * [mm](5-7x)^{3}[/mm] - [mm]21x^{2} *(5-7x)^{2}[/mm]

[ok]

  

> kann ich dass dann noch irgendwie zusammenfassen???

Du könntest hier z.B. [mm] $(5-7x)^2$ [/mm] ausklammern.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Ableitungen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:22 Mo 12.01.2009
Autor: mathegenie84

Aufgabe
siehe oben

Wenn ich [mm] (5-7x)^{2} [/mm] Ausklammere, dann hätte ich

(2x -21x²)* (5-7x)² ???? ich glaube das passt nicht so wirklich, mit dem Ausklammern komme ich nicht zurecht.

Bezug
                                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:38 Mo 12.01.2009
Autor: M.Rex

Hallo

Du hast:

[mm] 2x(5-7x)^{3}-21x^{2}(5-7x)^{2} [/mm]
Ausklammern ergibt:
[mm] (5-7x)^{2}\left[2x(5-7x)^{3-2}-21x^{2}\right] [/mm]
[mm] =(5-7x)^{2}\left[2x(5-7x)^{1}-21x^{2}\right] [/mm]
[mm] =(5-7x)^{2}\left[2x(5-7x)-21x^{2}\right] [/mm]
[mm] =(5-7x)^{2}\left[10x-14x²-21x^{2}\right] [/mm]
[mm] =(5-7x)^{2}(10x-35x²) [/mm]

Marius

Bezug
        
Bezug
Ableitungen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:07 Mo 12.01.2009
Autor: mathegenie84

Aufgabe
f(x) = (2x+5)² * (3x-4)²

Hallo Zusammen,

ich denke das es jetzt Klick gemacht hat.
Habe noch eine weitere Aufgabe (siehe oben). Ich versuchs mal und es wäre schön, wenn jemand mal drüber schauen könnte.

Also:
u(x)= 2x+5   u´(x)= 2
v(a)= a²   v´(a)= 2a
und
u(x)= 3x-4   u´(x)= 3
v(a)= a²   v´(a)= 2a

jetzt die Produktregel angewendet, also

f´(x)= 2*(2x+5) * 2 * (3x-4)² + (2x+5)² *2 * (3x-4)*3
zusammengefasst
f´(x) = 4* (2x+5) * (3x-4)² + 6 * (2x+5)² * (3x-4)

kann ich jetzt einmal (2x+5) und einmal (3x-4) ausklammern????

Bezug
                
Bezug
Ableitungen: soweit richtig
Status: (Antwort) fertig Status 
Datum: 14:37 Mo 12.01.2009
Autor: Roadrunner

Hallo Mathegenie!


[ok] Soweit alles richtig.


> kann ich jetzt einmal (2x+5) und einmal (3x-4) ausklammern????

[ok] Ja.


Gruß vom
Roadrunner


Bezug
                        
Bezug
Ableitungen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:49 Mo 12.01.2009
Autor: mathegenie84

Ok, also klammere ich (3x-4) und (2x+5) aus

dann habe ich für
f´(x)= (3x-4)*(2x+5)*(4*(2x+5)+6*(3x-4))

zusammengefasst bleibt also folgendes übrig:

f´(x)= (3x-4)*(2x+5)*(26x-4)

Stimmt das???

Bezug
                                
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:09 Mo 12.01.2009
Autor: moody


> Stimmt das???

[ok]

lg moody

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de