www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Ableitungen
Ableitungen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:45 Di 02.02.2010
Autor: Krone

Aufgabe
Ableitung bilden von:

g(t) = [mm] 30-10e^{2-t} [/mm]


Hey,
wollte keinen neuen Thread aufmachen, daher die kurze frage. Ist das so richtig ?:

g'(t) = 30 * (-10) * [mm] (-1)*e^{2-t} [/mm]
= [mm] 300e^{2-t} [/mm]

Gruß

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:58 Di 02.02.2010
Autor: Stefan-auchLotti


> Ableitung bilden von:
>  
> $g(t) [mm] =30-10e^{2-t}$ [/mm]
>  
>
> Hey,
>  wollte keinen neuen Thread aufmachen, daher die kurze
> frage. Ist das so richtig ?:
>  
> $g'(t) = 30 * (-10) * [mm] (-1)*e^{2-t}$ [/mm]
> [mm] $=300e^{2-t}$ [/mm]

[notok]

>  
> Gruß

Hi!

Du hast aus einer Summe ein Produkt gemacht! Beachte das $g(t) [mm] =30\red{-}10e^{2-t}$ [/mm] Minus im Term und nutze dementsprechend die Regel $(f+g)'=f'+g'$ in Verbindung mit der Kettenregel für die E-Funktion. Du bist auf dem richtigen Weg!

Grüße, Stefan.

Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:02 Di 02.02.2010
Autor: Krone


> > Ableitung bilden von:
>  >  
> > [mm]g(t) =30-10e^{2-t}[/mm]
>  >  
> >
> > Hey,
>  >  wollte keinen neuen Thread aufmachen, daher die kurze
> > frage. Ist das so richtig ?:
>  >  
> > [mm]g'(t) = 30 * (-10) * (-1)*e^{2-t}[/mm]
>  > [mm]=300e^{2-t}[/mm]

>  
> [notok]
>  
> >  

> > Gruß
>
> Hi!
>  
> Du hast aus einer Summe ein Produkt gemacht! Beachte das
> [mm]g(t) =30\red{-}10e^{2-t}[/mm] Minus im Term und nutze

ja schon klar ... aber ... für mich gehört die -10 zur E-Funktion, da * doch vor Minus geht ... versteh ich nicht ... naja egal

> dementsprechend die Regel [mm](f+g)'=f'+g'[/mm] in Verbindung mit
> der Kettenregel für die E-Funktion. Du bist auf dem
> richtigen Weg!
>  
> Grüße, Stefan.

Also so:

g'(t) = [mm] (30-10)*(-t)*e^{2-t} [/mm]

?

versteh aber den sinn nicht ...

Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Di 02.02.2010
Autor: Stefan-auchLotti


> > > Ableitung bilden von:
>  >  >  
> > > [mm]g(t) =30-10e^{2-t}[/mm]
>  >  >  
> > >
> > > Hey,
>  >  >  wollte keinen neuen Thread aufmachen, daher die
> kurze
> > > frage. Ist das so richtig ?:
>  >  >  
> > > [mm]g'(t) = 30 * (-10) * (-1)*e^{2-t}[/mm]
>  >  > [mm]=300e^{2-t}[/mm]

>  >  
> > [notok]
>  >  
> > >  

> > > Gruß
> >
> > Hi!
>  >  
> > Du hast aus einer Summe ein Produkt gemacht! Beachte das
> > [mm]g(t) =30\red{-}10e^{2-t}[/mm] Minus im Term und nutze
>
> ja schon klar ... aber ... für mich gehört die -10 zur
> E-Funktion, da * doch vor Minus geht ... versteh ich nicht
> ... naja egal
>  
> > dementsprechend die Regel [mm](f+g)'=f'+g'[/mm] in Verbindung mit
> > der Kettenregel für die E-Funktion. Du bist auf dem
> > richtigen Weg!
>  >  
> > Grüße, Stefan.
>
> Also so:
>  
> g'(t) = [mm](30-10)*(-t)*e^{2-t}[/mm]
>  
> ?
>  
> versteh aber den sinn nicht ...

Den Sinn wovon? Jetzt hast du Punkt-vor-Strich-Rechnung missachtet und falsch abgeleitet. Geh systematisch vor. Wir teilen g in zwei Funktionen auf, die in der Summe wieder g ergeben: $g=f+h$ mit $f(t)=30$ und [mm] $h(t)=-10e^{2-t}$ [/mm]

Wende jetzt mal $g'=f'+h'$ an, indem du $f$ und $h$ getrennt ableitest gemäß den bekannten Ableitungsregeln (Faktorregel, Regel für konstante Summanden, Kettenregel).

Addiere danach $f'$ und $h'$.

Grüße, Stefan.

Bezug
                                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Di 02.02.2010
Autor: Krone


> > > > Ableitung bilden von:
>  >  >  >  
> > > > [mm]g(t) =30-10e^{2-t}[/mm]

>
> Den Sinn wovon? Jetzt hast du Punkt-vor-Strich-Rechnung
> missachtet und falsch abgeleitet. Geh systematisch vor. Wir
> teilen g in zwei Funktionen auf, die in der Summe wieder g
> ergeben: [mm]g=f+h[/mm] mit [mm]f(t)=30[/mm] und [mm]h(t)=-10e^{2-t}[/mm]
>  
> Wende jetzt mal [mm]g'=f'+h'[/mm] an, indem du [mm]f[/mm] und [mm]h[/mm] getrennt
> ableitest gemäß den bekannten Ableitungsregeln
> (Faktorregel, Regel für konstante Summanden,
> Kettenregel).
>  
> Addiere danach [mm]f'[/mm] und [mm]h'[/mm].
>  

Ok, 3. Versuch ...

g'(t) = 10t [mm] *e^{2-t} [/mm]

?

Weil die 30 abgeleitet fällt weg, dann muss ich ja nur die e-funktion ableiten.
oder ?


> Grüße, Stefan.


Bezug
                                        
Bezug
Ableitungen: Antwort editiert: geschlafen!
Status: (Antwort) fertig Status 
Datum: 19:28 Di 02.02.2010
Autor: Herby

Hallo,

> > > > > Ableitung bilden von:
>  >  >  >  >  
> > > > > [mm]g(t) =30-10e^{2-t}[/mm]
>  
> >
> > Den Sinn wovon? Jetzt hast du Punkt-vor-Strich-Rechnung
> > missachtet und falsch abgeleitet. Geh systematisch vor. Wir
> > teilen g in zwei Funktionen auf, die in der Summe wieder g
> > ergeben: [mm]g=f+h[/mm] mit [mm]f(t)=30[/mm] und [mm]h(t)=-10e^{2-t}[/mm]
>  >  
> > Wende jetzt mal [mm]g'=f'+h'[/mm] an, indem du [mm]f[/mm] und [mm]h[/mm] getrennt
> > ableitest gemäß den bekannten Ableitungsregeln
> > (Faktorregel, Regel für konstante Summanden,
> > Kettenregel).
>  >  
> > Addiere danach [mm]f'[/mm] und [mm]h'[/mm].
>  >  
>
> Ok, 3. Versuch ...
>  
> g'(t) = 10t [mm]*e^{2-t}[/mm]
>
> ?

daumenhoch nein, nicht richtig - sorry, hab's erst jetzt gesehen: "ohne t"!


[mm] g'(t)=10*e^{2-t} [/mm]

> Weil die 30 abgeleitet fällt weg, dann muss ich ja nur die
> e-funktion ableiten.
>  oder ?

ja :-)



LG
Herby

Bezug
                                                
Bezug
Ableitungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:38 Di 02.02.2010
Autor: Krone

na endlich ^^

danke euch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de