www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Ableitungen
Ableitungen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 03:14 Di 24.01.2012
Autor: DudiPupan

Aufgabe
Seien $I=(0,a) (a > 0)$ ein Intervall in [mm] $\IR$ [/mm] und [mm] $f:\bar [/mm] I [mm] \times \bar [/mm] I , [mm] (x,t)\mapsto [/mm] f(x,t)$ stetig. Für alle [mm] $x\in \bar [/mm] I , [mm] t\in \bar [/mm] I$ existiere
[mm] $g(x,t):=\frac{\delta}{\delta t}f(x,t)$ [/mm]
Weiter sei g in [mm] $\bar [/mm] I [mm] \times \bar [/mm] I$ stetig. Berechnen Sie folgende Ableitung.
[mm] $\frac{d}{dt}\int_0^t{f(x,t)dx}$. [/mm]
$(ii)$ Berechnen Sie unter Verwendung der Ergebnisse aus Aufgabenteil $(i)$ folgende Ableitung.
[mm] $\frac{d}{dt}\int_0^t{e^{-xt}}$ [/mm]

Hallo zusammen,
ich arbeite gerade an obriger Aufgabe, aber verzweifle daran.
Weiß einfach nicht, wie ich vorgehen soll und hoffe auf Hilfe.

Vielen Dank
LG
Dudi

        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:14 Di 24.01.2012
Autor: fred97


> Seien [mm]I=(0,a) (a > 0)[/mm] ein Intervall in [mm]\IR[/mm] und [mm]f:\bar I \times \bar I , (x,t)\mapsto f(x,t)[/mm]
> stetig. Für alle [mm]x\in \bar I , t\in \bar I[/mm] existiere
>  [mm]g(x,t):=\frac{\delta}{\delta t}f(x,t)[/mm]
>  Weiter sei g in
> [mm]\bar I \times \bar I[/mm] stetig. Berechnen Sie folgende
> Ableitung.
>  [mm]\frac{d}{dt}\int_0^t{f(x,t)dx}[/mm].
>  [mm](ii)[/mm] Berechnen Sie unter Verwendung der Ergebnisse aus
> Aufgabenteil [mm](i)[/mm] folgende Ableitung.
>  [mm]\frac{d}{dt}\int_0^t{e^{-xt}}[/mm]
>  Hallo zusammen,
>  ich arbeite gerade an obriger Aufgabe, aber verzweifle
> daran.
>  Weiß einfach nicht, wie ich vorgehen soll und hoffe auf
> Hilfe.

Wir setzen für t,s [mm] \in [/mm] I: $H(t):= [mm] \int_0^t{f(x,t)dx} [/mm] $ und [mm] $F(s,t):=\int_0^s{f(x,t)dx} [/mm] $.

Dann ist H(t)=F(t,t) und zu berechnen ist H'(t).

Nach dem Hauptsatz ist [mm] F_s(s,t)= [/mm] f(s,t) und weiter ist [mm] $F_t(s,t)=\int_0^s{g(x,t)dx} [/mm] $.

Nun berechne mit der Kettenregel die Ableitung von H(t)=F(t,t)

FRED

>  
> Vielen Dank
>  LG
> Dudi


Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:25 Mi 25.01.2012
Autor: DudiPupan


> > Seien [mm]I=(0,a) (a > 0)[/mm] ein Intervall in [mm]\IR[/mm] und [mm]f:\bar I \times \bar I , (x,t)\mapsto f(x,t)[/mm]
> > stetig. Für alle [mm]x\in \bar I , t\in \bar I[/mm] existiere
>  >  [mm]g(x,t):=\frac{\delta}{\delta t}f(x,t)[/mm]
>  >  Weiter sei g
> in
> > [mm]\bar I \times \bar I[/mm] stetig. Berechnen Sie folgende
> > Ableitung.
>  >  [mm]\frac{d}{dt}\int_0^t{f(x,t)dx}[/mm].
>  >  [mm](ii)[/mm] Berechnen Sie unter Verwendung der Ergebnisse aus
> > Aufgabenteil [mm](i)[/mm] folgende Ableitung.
>  >  [mm]\frac{d}{dt}\int_0^t{e^{-xt}}[/mm]
>  >  Hallo zusammen,
>  >  ich arbeite gerade an obriger Aufgabe, aber verzweifle
> > daran.
>  >  Weiß einfach nicht, wie ich vorgehen soll und hoffe
> auf
> > Hilfe.
>  
> Wir setzen für t,s [mm]\in[/mm] I: [mm]H(t):= \int_0^t{f(x,t)dx}[/mm] und
> [mm]F(s,t):=\int_0^s{f(x,t)dx} [/mm].
>
> Dann ist H(t)=F(t,t) und zu berechnen ist H'(t).
>  
> Nach dem Hauptsatz ist [mm]F_s(s,t)=[/mm] f(s,t)

Wie meinst du das?
meinst du [mm]F_s'(s,t)=(\int_0^sf(s,t)ds)'=[/mm] f(s,t)

und weiter ist

> [mm]F_t(s,t)=\int_0^s{g(x,t)dx} [/mm].
>
> Nun berechne mit der Kettenregel die Ableitung von
> H(t)=F(t,t)
>  
> FRED
>  >  
> > Vielen Dank
>  >  LG
> > Dudi
>  


Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Mi 25.01.2012
Autor: fred97


> > > Seien [mm]I=(0,a) (a > 0)[/mm] ein Intervall in [mm]\IR[/mm] und [mm]f:\bar I \times \bar I , (x,t)\mapsto f(x,t)[/mm]
> > > stetig. Für alle [mm]x\in \bar I , t\in \bar I[/mm] existiere
>  >  >  [mm]g(x,t):=\frac{\delta}{\delta t}f(x,t)[/mm]
>  >  >  Weiter
> sei g
> > in
> > > [mm]\bar I \times \bar I[/mm] stetig. Berechnen Sie folgende
> > > Ableitung.
>  >  >  [mm]\frac{d}{dt}\int_0^t{f(x,t)dx}[/mm].
>  >  >  [mm](ii)[/mm] Berechnen Sie unter Verwendung der Ergebnisse
> aus
> > > Aufgabenteil [mm](i)[/mm] folgende Ableitung.
>  >  >  [mm]\frac{d}{dt}\int_0^t{e^{-xt}}[/mm]
>  >  >  Hallo zusammen,
>  >  >  ich arbeite gerade an obriger Aufgabe, aber
> verzweifle
> > > daran.
>  >  >  Weiß einfach nicht, wie ich vorgehen soll und hoffe
> > auf
> > > Hilfe.
>  >  
> > Wir setzen für t,s [mm]\in[/mm] I: [mm]H(t):= \int_0^t{f(x,t)dx}[/mm] und
> > [mm]F(s,t):=\int_0^s{f(x,t)dx} [/mm].
> >
> > Dann ist H(t)=F(t,t) und zu berechnen ist H'(t).
>  >  
> > Nach dem Hauptsatz ist [mm]F_s(s,t)=[/mm] f(s,t)
>  Wie meinst du das?
>  meinst du [mm]F_s'(s,t)=(\int_0^sf(s,t)ds)'=[/mm] f(s,t)


Nein.

Ist J ein Intervall in [mm] \IR [/mm] , a [mm] \in [/mm] J,  [mm] \phi:J \to \IR [/mm] stetig und [mm] \Phi [/mm] :J [mm] \to \IR [/mm] def. durch

            [mm] \Phi(s):=\integral_{a}^{s}{\phi(x) dx}, [/mm]

so besagt der Hauptsatz der Diff.- und Integralrechnung, dass [mm] \Phi [/mm] auf J differenzierbar ist und dass [mm] \Phi [/mm] eine Stammfunktion von [mm] \phi [/mm] auf J ist.

FRED

>  
> und weiter ist
> > [mm]F_t(s,t)=\int_0^s{g(x,t)dx} [/mm].
> >
> > Nun berechne mit der Kettenregel die Ableitung von
> > H(t)=F(t,t)
>  >  
> > FRED
>  >  >  
> > > Vielen Dank
>  >  >  LG
> > > Dudi
> >  

>  


Bezug
                
Bezug
Ableitungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:52 Mi 25.01.2012
Autor: DudiPupan


> > Seien [mm]I=(0,a) (a > 0)[/mm] ein Intervall in [mm]\IR[/mm] und [mm]f:\bar I \times \bar I , (x,t)\mapsto f(x,t)[/mm]
> > stetig. Für alle [mm]x\in \bar I , t\in \bar I[/mm] existiere
>  >  [mm]g(x,t):=\frac{\delta}{\delta t}f(x,t)[/mm]
>  >  Weiter sei g
> in
> > [mm]\bar I \times \bar I[/mm] stetig. Berechnen Sie folgende
> > Ableitung.
>  >  [mm]\frac{d}{dt}\int_0^t{f(x,t)dx}[/mm].
>  >  [mm](ii)[/mm] Berechnen Sie unter Verwendung der Ergebnisse aus
> > Aufgabenteil [mm](i)[/mm] folgende Ableitung.
>  >  [mm]\frac{d}{dt}\int_0^t{e^{-xt}}[/mm]
>  >  Hallo zusammen,
>  >  ich arbeite gerade an obriger Aufgabe, aber verzweifle
> > daran.
>  >  Weiß einfach nicht, wie ich vorgehen soll und hoffe
> auf
> > Hilfe.
>  
> Wir setzen für t,s [mm]\in[/mm] I: [mm]H(t):= \int_0^t{f(x,t)dx}[/mm] und
> [mm]F(s,t):=\int_0^s{f(x,t)dx} [/mm].
>
> Dann ist H(t)=F(t,t) und zu berechnen ist H'(t).
>  
> Nach dem Hauptsatz ist [mm]F_s(s,t)=[/mm] f(s,t) und weiter ist
> [mm]F_t(s,t)=\int_0^s{g(x,t)dx} [/mm].
>
> Nun berechne mit der Kettenregel die Ableitung von
> H(t)=F(t,t)

Ich verstehe noch nicht ganz, wie man mit dem von dir oben gegebenen auf H(t,t) kommt, so dass ich die kettenregel anwenden könnte!


Vielen Dank für die Geduld

LD
Dudi

>  
> FRED
>  >  
> > Vielen Dank
>  >  LG
> > Dudi
>  


Bezug
                        
Bezug
Ableitungen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:51 Do 26.01.2012
Autor: fred97


> > > Seien [mm]I=(0,a) (a > 0)[/mm] ein Intervall in [mm]\IR[/mm] und [mm]f:\bar I \times \bar I , (x,t)\mapsto f(x,t)[/mm]
> > > stetig. Für alle [mm]x\in \bar I , t\in \bar I[/mm] existiere
>  >  >  [mm]g(x,t):=\frac{\delta}{\delta t}f(x,t)[/mm]
>  >  >  Weiter
> sei g
> > in
> > > [mm]\bar I \times \bar I[/mm] stetig. Berechnen Sie folgende
> > > Ableitung.
>  >  >  [mm]\frac{d}{dt}\int_0^t{f(x,t)dx}[/mm].
>  >  >  [mm](ii)[/mm] Berechnen Sie unter Verwendung der Ergebnisse
> aus
> > > Aufgabenteil [mm](i)[/mm] folgende Ableitung.
>  >  >  [mm]\frac{d}{dt}\int_0^t{e^{-xt}}[/mm]
>  >  >  Hallo zusammen,
>  >  >  ich arbeite gerade an obriger Aufgabe, aber
> verzweifle
> > > daran.
>  >  >  Weiß einfach nicht, wie ich vorgehen soll und hoffe
> > auf
> > > Hilfe.
>  >  
> > Wir setzen für t,s [mm]\in[/mm] I: [mm]H(t):= \int_0^t{f(x,t)dx}[/mm] und
> > [mm]F(s,t):=\int_0^s{f(x,t)dx} [/mm].
> >
> > Dann ist H(t)=F(t,t) und zu berechnen ist H'(t).
>  >  
> > Nach dem Hauptsatz ist [mm]F_s(s,t)=[/mm] f(s,t) und weiter ist
> > [mm]F_t(s,t)=\int_0^s{g(x,t)dx} [/mm].
> >
> > Nun berechne mit der Kettenregel die Ableitung von
> > H(t)=F(t,t)
>  
> Ich verstehe noch nicht ganz, wie man mit dem von dir oben
> gegebenen auf H(t,t)


Du meinst H(t) ?


>  kommt, so dass ich die kettenregel
> anwenden könnte!
>  
>
> Vielen Dank für die Geduld
>  
> LD
> Dudi
>  
> >  

> > FRED
>  >  >  
> > > Vielen Dank
>  >  >  LG
> > > Dudi
> >  

>  


Wir hatten:   $ H(t):= [mm] \int_0^t{f(x,t)dx} [/mm] $ und $ [mm] F(s,t):=\int_0^s{f(x,t)dx} [/mm] $.

Dann ist doch: $ [mm] F(t,t)=\int_0^t{f(x,t)dx} [/mm] =H(t)$.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de