www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Ableitungen berechnen
Ableitungen berechnen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Mo 08.04.2013
Autor: hula

Hallöchen

ich habe eine genügend of differenzierbare Funktion $v(t,x)$. Diese erfüllt die PDE

[mm] $v_t+\frac{1}{2}\lambda^2x^2 v_{xx}=0$ [/mm]

wobei [mm] $v_t$ [/mm] für die partiella Ableitung nach $t$ steht etc. Nun gilt [mm] $v(t,x)=e^{-rt}w(t,xe^{rt})$ [/mm] mit [mm] $y:=xe^{rt}$. [/mm] Es wird behaupted, dass folgendes gilt:

[mm] $0=w_t+ryw_y +\frac{1}{2}\lambda^2y^2w_{yy}-rw$ [/mm]


Wieso stimmt das? Was ich gemacht habe bis jetzt: für $v$ entsprechend $w$ eingesetzt und die Ableitungen gemäss der ersten PDE ausgerechnet:

[mm] $v_t=\frac{\partial }{\partial t} e^{-rt}w(t,xe^{rt})=-re^{-rt}w(t,xe^{rt})+e^{-rt}w_t(t,xe^{rt})$ [/mm]

stimmt dies?

Nun weiter: [mm] $\frac{\partial}{\partial x} e^{-rt}w(t,xe^{rt})= e^{-rt}w_x(t,xe^{rt})$ [/mm] und [mm] $\frac{\partial}{\partial x}(e^{-rt}w_x(t,xe^{rt})=e^{-rt}w_{xx}(t,xe^{rt})$. [/mm]

Ich würde also folgende PDE bekommen für $w$:

[mm] $-rw+w_t+\frac{1}{2}\lambda^2y^2w_{yy}$ [/mm]

Mir fehlt also ein Term. Was habe ich falsch gemacht? Danke und Grüsse

hula

        
Bezug
Ableitungen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mo 08.04.2013
Autor: fred97


> Hallöchen
>  
> ich habe eine genügend of differenzierbare Funktion
> [mm]v(t,x)[/mm]. Diese erfüllt die PDE
>  
> [mm]v_t+\frac{1}{2}\lambda^2x^2 v_{xx}=0[/mm]
>  
> wobei [mm]v_t[/mm] für die partiella Ableitung nach [mm]t[/mm] steht etc.
> Nun gilt [mm]v(t,x)=e^{-rt}w(t,xe^{rt})[/mm] mit [mm]y:=xe^{rt}[/mm]. Es wird
> behaupted, dass folgendes gilt:
>  
> [mm]0=w_t+ryw_y +\frac{1}{2}\lambda^2y^2w_{yy}-rw[/mm]
>  
>
> Wieso stimmt das? Was ich gemacht habe bis jetzt: für [mm]v[/mm]
> entsprechend [mm]w[/mm] eingesetzt und die Ableitungen gemäss der
> ersten PDE ausgerechnet:
>  
> [mm]v_t=\frac{\partial }{\partial t} e^{-rt}w(t,xe^{rt})=-re^{-rt}w(t,xe^{rt})+e^{-rt}w_t(t,xe^{rt})[/mm]
>  
> stimmt dies?

Nein. Wenn Du [mm] w(t,xe^{rt}) [/mm] nach t ableitest, brauchst Du die Kettenregel und bekommst:

     [mm] w_t(t,xe^{rt})+w_y(t,xe^{rt})*xre^{rt}. [/mm]

Weiter unten missachtest Du diese Regel ebenfalls.

FRED

>  
> Nun weiter: [mm]\frac{\partial}{\partial x} e^{-rt}w(t,xe^{rt})= e^{-rt}w_x(t,xe^{rt})[/mm]
> und [mm]\frac{\partial}{\partial x}(e^{-rt}w_x(t,xe^{rt})=e^{-rt}w_{xx}(t,xe^{rt})[/mm].
>  
> Ich würde also folgende PDE bekommen für [mm]w[/mm]:
>  
> [mm]-rw+w_t+\frac{1}{2}\lambda^2y^2w_{yy}[/mm]
>  
> Mir fehlt also ein Term. Was habe ich falsch gemacht? Danke
> und Grüsse
>  
> hula


Bezug
                
Bezug
Ableitungen berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Mo 08.04.2013
Autor: hula

Hallo fred

> Nein. Wenn Du [mm]w(t,xe^{rt})[/mm] nach t ableitest, brauchst Du
> die Kettenregel und bekommst:
>  
> [mm]w_t(t,xe^{rt})+w_y(t,xe^{rt})*xre^{rt}.[/mm]
>  

sollte das $+$ nicht ein [mm] $\cdot$ [/mm] sein?

Bezug
                
Bezug
Ableitungen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Mo 08.04.2013
Autor: hula

Hallo fred

danke für deine schnelle Antwort. So ganz geht das bei mir aber noch nicht auf:

[mm] $v(x,t)=e^{-rt}w(t,y(t,x))$ [/mm]

wobei [mm] $y(t,x)=xe^{rt}$. [/mm] Nun nochmals:

[mm] $v_t=-re^{-rt}w(t,y(t,x))+e^{-rt}w_y(t,y(t,x))\frac{\partial y}{\partial t}=-re^{-rt}w(t,y(t,x))+e^{-rt}w_y(t,y(t,x))xre^{rt}=-re^{-rt}w(t,y(t,x))+w_y(t,y(t,x))xr$ [/mm]

Stimmt dies soweit?

Nun nach $x$:

[mm] $v_x=e^{-rt}w_y(t,y(t,x))\frac{\partial y}{\partial x}=e^{-rt}w_y(t,y(t,x))e^{rt}=w_y(t,y(t,x))$ [/mm]

daher

[mm] $v_{xx}=w_{yy}e^{rt}$, [/mm] so dass ich insgesammt erhalte:

[mm] $e^{-rt}\left[-rw(t,y(t,x))+xrw_y(t,y(t,x))+\frac{1}{2}\lambda^2y(t,x)^2w_{yy} \right]=0$ [/mm]

Leider fehlt mir immer noch ein Term. Wo liegt den nun der Fehler?

Bezug
                        
Bezug
Ableitungen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:05 Mo 08.04.2013
Autor: MathePower

Hallo hula,

> Hallo fred
>  
> danke für deine schnelle Antwort. So ganz geht das bei mir
> aber noch nicht auf:
>  
> [mm]v(x,t)=e^{-rt}w(t,y(t,x))[/mm]
>
> wobei [mm]y(t,x)=xe^{rt}[/mm]. Nun nochmals:
>  
> [mm]v_t=-re^{-rt}w(t,y(t,x))+e^{-rt}w_y(t,y(t,x))\frac{\partial y}{\partial t}=-re^{-rt}w(t,y(t,x))+e^{-rt}w_y(t,y(t,x))xre^{rt}=-re^{-rt}w(t,y(t,x))+w_y(t,y(t,x))xr[/mm]
>  


Es fehlt hier:

[mm]v_t=-re^{-rt}w(t,y(t,x))+e^{-rt}\left(\red{w_t(t,y(t,x))}+w_y(t,y(t,x))\frac{\partial y}{\partial t}\right)[/mm]


> Stimmt dies soweit?
>  
> Nun nach [mm]x[/mm]:
>  
> [mm]v_x=e^{-rt}w_y(t,y(t,x))\frac{\partial y}{\partial x}=e^{-rt}w_y(t,y(t,x))e^{rt}=w_y(t,y(t,x))[/mm]
>  
> daher
>
> [mm]v_{xx}=w_{yy}e^{rt}[/mm], so dass ich insgesammt erhalte:
>  
> [mm]e^{-rt}\left[-rw(t,y(t,x))+xrw_y(t,y(t,x))+\frac{1}{2}\lambda^2y(t,x)^2w_{yy} \right]=0[/mm]
>  
> Leider fehlt mir immer noch ein Term. Wo liegt den nun der
> Fehler?


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de