www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Ableitungen der Umkehrfunktion
Ableitungen der Umkehrfunktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen der Umkehrfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 So 28.02.2010
Autor: ChrisCI

Aufgabe
Gegeben seien s(x,y,z), t(x,y,z) und u(x,y,z) mit s,t,u: [mm] \IR^{3} \to [/mm] [0,1] [mm] \subset \IR [/mm] streng monoton steigend, x,y,z [mm] \in [/mm] [0,1] [mm] \subset \IR, [/mm] s(0,y,z) = 0, s(1,y,z) = 1, t(x,0,z) = 0, t(x,1,z) = 1, u(x,y,0) = 0, u(x,y,1) = 1.
Wie bekommt man die Ableitungen höherer Ordnung der Umkehrfunktionen? (Lokal oder global, falls möglich)  

Für erste Ordnung weiß ich, dass man das totale Differential bilden kann, und zwar einmal für s,t,u und einmal für x,y,z. Dann schreibt man das ganze  in Matrixschreibweise hin:

Einserseits:
[mm] \vektor{ds \\ dt \\ du} [/mm] = [mm] \pmat{ s_{x} & s_{y} & s_{z} \\ t_{x} & t_{y} & t_{z} \\ u_{x} & u_{y} & u_{z}}\vektor{dx \\ dy \\ dz} [/mm]

und andererseits:
[mm] \vektor{dx \\ dy \\ dz} [/mm] = [mm] \pmat{ x_{s} & x_{t} & x_{u} \\ y_{s} & y_{t} & y_{u} \\ z_{s} & z_{t} & z_{u}}\vektor{ds \\ dt \\ du} [/mm]

Man sieht, dass, falls die Matrizen invertierbar sind, diese jeweils zueinander invers sind.

Aber für Ableitungen höherer Ordnung funktioniert das irgendwie nicht... Dort habe ich das Problem, dass bei einem Differential [mm] d^{2}s [/mm] und beim anderen [mm] ds^{2} [/mm] herauskommt.

Ich bräuchte dass bis zu den 4. Ableitungen. Kann mir da jemand behilflich sein, oder sagen, wo ich sowas nachlesen kann?

Vielen Dank,
Chris

        
Bezug
Ableitungen der Umkehrfunktion: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:02 So 28.02.2010
Autor: ChrisCI

Brauche ich da lediglich den Satz über die inversen Funktionen anwenden? und für höhere Ableitungen als Funktion eben schon Ableitungen vom Grad eins weniger benutzen?

Bezug
        
Bezug
Ableitungen der Umkehrfunktion: Antwort selbst gefunden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:30 So 28.02.2010
Autor: ChrisCI

Ich muss nur entsprechende Matrizen wie z.B.
[mm] \pmat{ \partial_{s} & 0 & 0 \\ 0 & \partial_{s} & 0 \\ 0 & 0 & \partial_{s}} [/mm]

an die Matrizen dranmultiplizieren und nachdifferenzieren.

Die Frage hat sich damit erledigt!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de