www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Ableitungen von 1/coshx
Ableitungen von 1/coshx < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungen von 1/coshx: Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:34 Do 13.05.2010
Autor: capablanca

Aufgabe
1/coshx vier mal ableiten

Hallo, ich bin mir nicht ganz sicher ob ich richtig abgeleitet habe über Hinweise auf Fehler würde ich mich freuen.

mit Quotientenregel:
[mm] f(x)=\bruch{1}{coshx} [/mm]

[mm] f'(x)=\bruch{-sinhx}{(coshx)^2} [/mm]

[mm] f''(x)=\bruch{(coshx)^2*(-coshx)+(sinhx*2sinhx)}{(coshx)^4} [/mm]
ab hier bin ich mir unsicher:

also f''(x) zusammengefasst -->
[mm] f''(x)=\bruch{(-coshx)+(2sinh(x^2)}{(coshx)^2} [/mm]

sind meine Berechnungen bis jetzt richtig?

gruß capablanca

        
Bezug
Ableitungen von 1/coshx: Korrektur
Status: (Antwort) fertig Status 
Datum: 12:51 Do 13.05.2010
Autor: Loddar

Hallo capablanca!


> mit Quotientenregel:
> [mm]f(x)=\bruch{1}{coshx}[/mm]
>  
> [mm]f'(x)=\bruch{-sinhx}{(coshx)^2}[/mm]

[ok]

  

> [mm]f''(x)=\bruch{(coshx)^2*(-coshx)+(sinhx*2sinhx)}{(coshx)^4}[/mm]

[notok] Hier fehlt ganz am Ende noch die innere Ableitung.


> also f''(x) zusammengefasst -->
> [mm]f''(x)=\bruch{(-coshx)+(2sinh(x^2)}{(coshx)^2}[/mm]

Und wie Du dann hier (insbesondere im mNenner) auf dieses Ergebnis kommst, ist mir unklar.

Verwende anschließend folgende Identität zum Zusammenfassen:
[mm] $$\cosh^2(x)-\sinh^2(x) [/mm] \ = \ 1$$

Gruß
Loddar


Bezug
                
Bezug
Ableitungen von 1/coshx: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:41 Do 13.05.2010
Autor: capablanca

also:

$ [mm] f''(x)=\bruch{(coshx)^2\cdot{}(-coshx)+(sinhx\cdot{}2coshx*sinhx)}{(coshx)^4} [/mm] $

zusammenfassen:

$ [mm] f''(x)=\bruch{-(coshx)^3+(sin^2(x))*coshx}{(coshx)^4} [/mm] $
-->
$ [mm] f''(x)=\bruch{-(coshx)^2+(sinhx)^2}{(coshx)^3}$ [/mm] /*-1
-->
$ [mm] f''(x)=\bruch{(coshx)^2-(sinhx)^2}{(coshx)^3}$ [/mm]

$ [mm] f''(x)=\bruch{1}{(coshx)^3} [/mm] $


ist das bis jetzt richtig?


gruß capablanca



Bezug
                        
Bezug
Ableitungen von 1/coshx: Berichtigung
Status: (Frage) beantwortet Status 
Datum: 15:09 Do 13.05.2010
Autor: capablanca

Berichtigung:

also:

$ [mm] f''(x)=\bruch{(coshx)^2\cdot{}(-coshx)+(sinhx\cdot{}2coshx\cdot{}sinhx)}{(coshx)^4} [/mm] $

zusammenfassen:

$ [mm] f''(x)=\bruch{-(coshx)^3+(sin^2(x))\cdot{}coshx}{(coshx)^4} [/mm] $
-->
$ [mm] f''(x)=\bruch{-(coshx)^2+(sinhx)^2}{(coshx)^3} [/mm] $ /*-1
-->
$ [mm] f''(x)=\bruch{(coshx)^2-(sinhx)^2}{(coshx)^3} [/mm] $

$ [mm] f''(x)=\bruch{1}{(coshx)^3} [/mm] $


ist das bis jetzt richtig?


gruß capablanca

Bezug
                                
Bezug
Ableitungen von 1/coshx: nicht richtig
Status: (Antwort) fertig Status 
Datum: 23:05 Do 13.05.2010
Autor: Loddar

Hallo capablanca!


> [mm]f''(x)=\bruch{(coshx)^2\cdot{}(-coshx)+(sinhx\cdot{}2coshx\cdot{}sinhx)}{(coshx)^4}[/mm]

[ok]

  

> zusammenfassen:
>  
> [mm]f''(x)=\bruch{-(coshx)^3+(sin^2(x))\cdot{}coshx}{(coshx)^4}[/mm]

[notok] Wo ist der Faktor 2 hin im Zähler?


>  -->
> [mm]f''(x)=\bruch{-(coshx)^2+(sinhx)^2}{(coshx)^3}[/mm] /*-1

Folgefehler! Aber Du kannst hier doch nicht einfach mit (-1)_$ multiplizieren, dann veränderst Du doch den Term!


Gruß
Loddar


Bezug
                                        
Bezug
Ableitungen von 1/coshx: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Fr 14.05.2010
Autor: capablanca

Ok, danke dir Loddar für deine Hilfe, das Ergebnis ist [mm] f''(x)=\bruch{sinh^2(x)-1}{cosh^3(x)} [/mm]

jetzt bleiben ja nur noch zwei Ableitungen :-)


gruß capablanca

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de