www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Ableitungsfunktion
Ableitungsfunktion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ableitungsfunktion: Kettenregeln
Status: (Frage) beantwortet Status 
Datum: 12:45 So 02.11.2008
Autor: mucki.l

Aufgabe
Differenzieren Sie diese Funkion!

[mm] f(x)=\bruch{2x^{3}+1}{x^{2}+1} [/mm]


Mein Lösungsansatz ist:

[mm] f(x)=(2x^{3}+1)(x^{2}+1)^{-1} [/mm]

Nun bilde ich u(x) und v(x)

[mm] u(x)=2x^{3}+1 [/mm] --------------->    [mm] u'(x)=6x^{2} [/mm]

[mm] v(x)=(x^{2}+1)^{-1} [/mm]

Jetzt komme ich nicht mehr weiter

Ich hoffe mir kann jemand helfen.

        
Bezug
Ableitungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 So 02.11.2008
Autor: drunken_monkey

Um brüche Abzuleiten nimmst du diese Ableitungsregel:
[mm] (\bruch{u}{v})'=(\bruch{u'*v-u*v'}{v^2}) [/mm]

Das müsstest du hinbekommen oder?

Bezug
                
Bezug
Ableitungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 So 02.11.2008
Autor: mucki.l

Wie ist denn das Ergebnis der Aufgabe?

Bezug
                        
Bezug
Ableitungsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 So 02.11.2008
Autor: Tyskie84

Hallo,

nutze Drunken_monkey's Tipp und berechne die Ableitung. Dann kannst du sie posten und wir sagen dir ob es richtig ist :-)

Ich mach mal den Anfang:

[mm] \\u=2x³-1 [/mm]
[mm] \\u'=6x² [/mm]
[mm] \\v=x²+1 [/mm]
[mm] \\v'=? [/mm]

Und nun mit Hilfe der Quotientenregel zusammenfassen :-)

Du kannst das natürlich auch mit deinem Ansatz lösen indem du aus dem Bruch ein Produkt machst.

Dafür brauchst du dann die Ableitung von [mm] \\(x²+1)^{-1} [/mm] Das bekommst du mit den Kettenregel hin. Dann wäre die Ableitung [mm] \\-2x\cdot(x²+1)^{-2} [/mm]

Aber nutze doch lieber die Quotientenregel

[hut] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de