www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Abschätzen
Abschätzen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:21 Fr 19.01.2007
Autor: ueberforderter_Ersti

Aufgabe
Zeige, dass [mm] \sqrt{x+y} [/mm] < [mm] \sqrt{x} [/mm] + [mm] \sqrt{y} [/mm] für alle x,y [mm] \in \IR_{+} [/mm]

Guten Abend! ich stecke da irgendwie fest.. Es scheint mir eigentlich nicht sooo schwierig, aber irgendwie weiss ich auch nicht, wie ich das zeigen kann.. Ich hätte als Erklärung einfach geschrieben: da x,y [mm] \in \IR_{+}. [/mm] Oder gibts hier noch gross was zu beweisen?
Vielen Dank für die Hilfe Ersti

p.s. Ich habe diese Frage in keinem anderen Internetforum publiziert.

        
Bezug
Abschätzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:25 Fr 19.01.2007
Autor: ueberforderter_Ersti

ok ich sollte nächstes mal denken bevor ich poste..
Dreiecksungleichung ist der Ansatz, nicht? Und dann einfach, dass die Null nicht enthalten ist in [mm] \IR_{+} [/mm] also ist es > und nicht [mm] \ge [/mm]
Und schlussendlich die Begründung, dass die Relationen gewahrt werden durch die Wurzel, oder?

Bezug
        
Bezug
Abschätzen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:03 Fr 19.01.2007
Autor: VNV_Tommy

Hallo ueberforderter_Ersti!

> Zeige, dass [mm]\sqrt{x+y}[/mm] < [mm]\sqrt{x}[/mm] + [mm]\sqrt{y}[/mm] für alle x,y
> [mm]\in \IR_{+}[/mm]
>  Guten Abend! ich stecke da irgendwie fest.. Es
> scheint mir eigentlich nicht sooo schwierig, aber irgendwie
> weiss ich auch nicht, wie ich das zeigen kann.. Ich hätte
> als Erklärung einfach geschrieben: da x,y [mm]\in \IR_{+}.[/mm] Oder
> gibts hier noch gross was zu beweisen?
>  Vielen Dank für die Hilfe Ersti
>  
> p.s. Ich habe diese Frage in keinem anderen Internetforum
> publiziert.

Quadriere doch mal auf beiden Seiten der Ungleichung:

[mm](\sqrt{x+y})^{2} < (\sqrt{x}+\sqrt{y})^{2}[/mm]

Auf der linken Seite sollten sich Wurzel und Quadrat aufheben, auf der rechten Seite sollte die erste binomische Formel weiter helfen:

[mm]x+y < x+2\sqrt{xy}+y [/mm]

Auf beiden Seiten nun [mm]-x[/mm] und [mm]-y[/mm] gerechnet und es sollte sich ergeben:

[mm]0 < 2\sqrt{xy}[/mm]

Diese Aussage zu beweisen sollte nich allzu schwer sein, oder? ;-)

Vielleicht hilft dir das weiter?

Gruß,
Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de