www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Abschätzung
Abschätzung < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung: binomischer Lehrsatz
Status: (Frage) beantwortet Status 
Datum: 17:55 Mi 23.03.2011
Autor: bandchef

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Ich soll $10,2^4$ mit binomischen Lehrsatz abschätzen.


Hi Leute!

Meine Lösung:

$(10,2)^2 \geq \begin{pmatrix} 4 \\ 0 \end{pmatrix} \cdot 10 \cdot \left (\frac{2}{10} \right)^0 + \begin{pmatrix} 4 \\ 1 \end{pmatrix} 10 \cdot \left (\frac{2}{10} \right )^1 = 10 + 4 \cdot 2 = 18$


Irgendwie kann aber da was nicht stimmen, da das Ergebnis ja eigentlich kleiner sein sollte...

        
Bezug
Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Mi 23.03.2011
Autor: kamaleonti

Moin bandchef,
> Ich soll [mm]10,2^4[/mm] mit binomischen Lehrsatz abschätzen.
>  
> Hi Leute!
>  
> Meine Lösung:
>  
> [mm](10,2)^2 \geq \begin{pmatrix} 4 \\ 0 \end{pmatrix} \cdot 10 \cdot \left (\frac{2}{10} \right)^0 + \begin{pmatrix} 4 \\ 1 \end{pmatrix} 10 \cdot \left (\frac{2}{10} \right )^1 = 10 + 4 \cdot 2 = 18[/mm]

Du bringst einiges durcheinander. Wende den binomischen Lehrsatz auf [mm] (10+0,2)^4 [/mm] an.
Zur Erinnerung Binomischer Lehrsatz

[mm] \qquad $(10+0,2)^4=\vektor{4\\0}10^4(0,2)^0+\ldots$ [/mm]

>  
>
> Irgendwie kann aber da was nicht stimmen, da das Ergebnis
> ja eigentlich kleiner sein sollte...  

LG

Bezug
                
Bezug
Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Mi 23.03.2011
Autor: bandchef

$ [mm] (10+0,2)^4=\vektor{4\\0}10^4(0,2)^0+\vektor{4\\1}10^3(0,2)^1+\vektor{4\\2}10^2(0,2)^2 [/mm] = [mm] \vektor{4\\3}10^1(0,2)^3 [/mm] = [mm] \vektor{4\\4}10^0(0,2)^4 [/mm] = 10000 + 800 + 24 + 0,32 + 0,0016 = 10824,3216$


Wie sieht das jetzt bei [mm] $(99)^3$ [/mm] aus? Ich kann ja jetzt da schlecht das hier machen:

$ [mm] (9+0)^3=\vektor{3\\0}99^3(0)^0+\vektor{3\\1}99^2(0)^1+\vektor{3\\2}99^1(0)^2 [/mm] = [mm] \vektor{3\\3}99^0(0)^3 [/mm] = ...$

Wie geht das da jetzt?

Bezug
                        
Bezug
Abschätzung: an runde Werte anlehnen
Status: (Antwort) fertig Status 
Datum: 18:21 Mi 23.03.2011
Autor: Loddar

Hallo bandchef!


Es gilt: [mm]99 \ = \ 100-1[/mm] .


Gruß
Loddar


Bezug
                                
Bezug
Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Mi 23.03.2011
Autor: bandchef

Wenn ich mich da nun an runde werte anlehne, dann komm ich aber nicht genau auf 970299 was [mm] $99^3$ [/mm] eigentlich ist, ran... Ist das normal?


$ [mm] (100-1)^3=\vektor{3\\0}100^3(1)^0-\vektor{3\\1}100^2(1)^1-\vektor{3\\2}100^1(1)^2 [/mm] = [mm] \vektor{3\\3}100^0(1)^3 [/mm] = 969699 $

Bezug
                                        
Bezug
Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mi 23.03.2011
Autor: fred97


> Wenn ich mich da nun an runde werte anlehne


Was soll das denn bedeuten ?

FRED

> , dann komm ich
> aber nicht genau auf 970299 was [mm]99^3[/mm] eigentlich ist, ran...
> Ist das normal?


Bezug
                                        
Bezug
Abschätzung: vorrechnen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:31 Mi 23.03.2011
Autor: Loddar

Hallo!


Dann rechne mal bitte hier vor.


Gruß
Loddar


Bezug
                                                
Bezug
Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Mi 23.03.2011
Autor: bandchef

Ich glaub da hat sich ein edit überschnitten!

Bezug
                                        
Bezug
Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Mi 23.03.2011
Autor: leduart

Hallo
in deiner formel ist ein vorzeichenfehler un ein glied fehlt!
natürlich ist die bin. formel exakt! also hast du immer einen fehler gemacht, wenn du nicht [mm] 99^3 [/mm] rauskriegst.
gruss leduart


Bezug
                                                
Bezug
Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:45 Mi 23.03.2011
Autor: bandchef

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

$ (100-1)^3=\left [\vektor{3\\0}100^3(-1)^0\right ] + \left[\vektor{3\\1}100^2(1)^1 \right] + \left[ \vektor{3\\2}100^1(1)^2 \right ] + \left[ \vektor{3\\3}100^0(1)^3 \right ]= 1000000 + (-30000) + 300 + (-1) =  970299$

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de