www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Abschätzung mit Chauchy-Ungl.
Abschätzung mit Chauchy-Ungl. < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung mit Chauchy-Ungl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Mo 08.12.2008
Autor: Kathy2006

Aufgabe
Sei f eine ganze Funktion und es gebe [mm] c_{j}, [/mm] j = 0,1,...,m und ein R>0, so dass für alle z [mm] \in \IC [/mm] mit |z| [mm] \ge [/mm] R gilt:

|f(z)| [mm] \le \summe_{j=0}^{m}c_{j}|z|^{j} [/mm]

Zeigen Sie, dass f ein Polynom vom Grade [mm] \le [/mm] m ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Also meine Idee ist, die Cauchyschen Ungleichungen zu verwenden und damit zu zeigen, dass [mm] f^{n}(0) [/mm] = 0 ist für alle n > m.

Es gilt ja, dass für alle z [mm] \in \IC [/mm] mit [mm] |z-z_{0}| \le \bruch{r}{2} [/mm]

[mm] |f^{n}(z)| \le C_{n}\bruch{n!}{r^{n}}\max_{|\varphi-z_{0}|=r}|f(\varphi)| [/mm]

wobei [mm] C_{n} [/mm] eine von f unabhängige Konstante ist, [mm] z_{0} [/mm] der Mittelpunkt und r der Radius, so dass f auf [mm] \overline{D}(z_{0},r) [/mm] holomorph ist, was in unserem Fall ja eigentlich frei wählbar ist, da f ja ganz ist, oder?

Ich habe dann versucht das ganze abzuschätzen, bin da aber auf nichts Vernünftiges gekommen.


Würde mich sehr über ein paar Tipps freuen!

        
Bezug
Abschätzung mit Chauchy-Ungl.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Mo 08.12.2008
Autor: rainerS

Hallo!

> Sei f eine ganze Funktion und es gebe [mm]c_{j},[/mm] j = 0,1,...,m
> und ein R>0, so dass für alle z [mm]\in \IC[/mm] mit |z| [mm]\ge[/mm] R gilt:
>
> |f(z)| [mm]\le \summe_{j=0}^{m}c_{j}|z|^{j}[/mm]
>  
> Zeigen Sie, dass f ein Polynom vom Grade [mm]\le[/mm] m ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Also meine Idee ist, die Cauchyschen Ungleichungen zu
> verwenden und damit zu zeigen, dass [mm]f^{n}(0)[/mm] = 0 ist für
> alle n > m.
>
> Es gilt ja, dass für alle z [mm]\in \IC[/mm] mit [mm]|z-z_{0}| \le \bruch{r}{2}[/mm]
>
> [mm]|f^{n}(z)| \le C_{n}\bruch{n!}{r^{n}}\max_{|\varphi-z_{0}|=r}|f(\varphi)|[/mm]
>
> wobei [mm]C_{n}[/mm] eine von f unabhängige Konstante ist, [mm]z_{0}[/mm] der
> Mittelpunkt und r der Radius, so dass f auf
> [mm]\overline{D}(z_{0},r)[/mm] holomorph ist, was in unserem Fall ja
> eigentlich frei wählbar ist, da f ja ganz ist, oder?
>  
> Ich habe dann versucht das ganze abzuschätzen, bin da aber
> auf nichts Vernünftiges gekommen.

Was hast du denn bisher abgeschätzt?

Für den Fall [mm] $z_0=0$ [/mm] lautet deine Ungleichung doch

[mm]|f^{n}(z)| \le C_{n}\bruch{n!}{r^{n}}\max_{|\varphi|=r}|f(\varphi)|[/mm] für alle [mm] z \in \IC[/mm] mit [mm] $|z|\le \bruch{r}{2}$. [/mm]

Nach Voraussetzung ist

[mm] \max_{|\varphi|=r}|f(\varphi)| \le \max_{|\varphi|=r} \summe_{j=0}^{m}c_{j}|z|^{j} = \summe_{j=0}^{m}c_{j}r^j [/mm] für alle [mm] $r\ge [/mm] R$.

Was passiert, wenn du r immer größer werden lässt?

Viele Grüße
   Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de