www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Abschätzung n!
Abschätzung n! < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung n!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Mo 02.02.2015
Autor: sandroid

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe 1
Beweise mit den Aufgaben 2 und 3 die folgenden Abschätzung für n!:

3(\bruch{n}{3})^{n}\le n!\le2(\bruch{n}{2})^{n}


Aufgabe 2
a) $ (1+\bruch{1}{1})^{1}(1+\bruch{1}{2})^{2}(1+\bruch{1}{3})^{3}...(1+\bruch{1}{n-1})^{n-1}}=\bruch{n^{n}}{n!} $

b) $ (1+\bruch{1}{1})^{2}(1+\bruch{1}{2})^{3}(1+\bruch{1}{3})^{4}...(1+\bruch{1}{n-1})^{n}=\bruch{n^{n}}{(n-1)!} $


Aufgabe 3
Für alle natürlichen n ist

(1+\bruch{1}{n})^{n}<3 und (1+\bruch{1}{n})^{n+1}>(1+\bruch{1}{n})^n\ge2


Mir fehlt jeder vernünftige Ansatz.

Danke für jeglichen Hinweis.

Gruß,
sandroid

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abschätzung n!: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Mo 02.02.2015
Autor: huddel

Ich habs mir jetzt noch nicht genauer angeguckt, aber so wie das aussieht schreit es förmlich nach Induktion.

Bezug
        
Bezug
Abschätzung n!: Hinweise
Status: (Antwort) fertig Status 
Datum: 18:47 Mo 02.02.2015
Autor: statler

Hi, willkommen im Matheraum!

> Beweise mit den Aufgaben 2 und 3 die folgenden Abschätzung
> für n!:
>  
> [mm]3(\bruch{n}{3})^{n}\le n!\le2(\bruch{n}{2})^{n}[/mm]
>  a)
> [mm](1+\bruch{1}{1})^{1}(1+\bruch{1}{2})^{2}(1+\bruch{1}{3})^{3}[/mm]

Das kannst du doch einfach ausrechnen, zur Not mit dem TR.

>  
> b)
> [mm](1+\bruch{1}{1})^{2}(1+\bruch{1}{2})^{3}(1+\bruch{1}{3})^{4}...(1+\bruch{1}{n-1})^{n}=\bruch{n^{n}}{(n-1)!}[/mm]

Und das könnte man wohl mit vollständiger Induktion beweisen.

>  Für alle natürlichen n ist
>  
> [mm](1+\bruch{1}{n})^{n}<3[/mm] und
> [mm](1+\bruch{1}{n})^{n+1}>(1+\bruch{1}{n})^n\ge2[/mm]

Das ist etwas haariger, hast du mal ein paar Terme ausgerechnet?

>  Mir fehlt jeder vernünftige Ansatz.

Hm, schade!
Gruß Dieter



Bezug
                
Bezug
Abschätzung n!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Di 03.02.2015
Autor: sandroid

Hallo,

erst einmal danke für Ihr Reagieren auf meine Frage.

Ich bitte um Entschuldigung, die Frage 2 a) war nicht vollständig. Natürlich muss ich da nicht einfach nur etwas ausrechnen.

Aufgabe 2 und 3 lassen sich beide einfach beweisen. Beide habe ich bereits bewiesen und z.B. zu 2a) existiert noch ein alter beantworteter Fragethread hier irgendwo. Es geht mir nur um Aufgabe 1. Die anderen habe ich nur erwähnt, weil darauf Bezug genommen wird.

Ob ich bereits einige Terme ausgerechnet habe? Ja, gerade eben:
Für n = 1; 2; 3; 4; 5 gibt [mm] 3(\bruch{n}{3})^{n} [/mm] = 1; [mm] \bruch{4}{3}; [/mm] 3; 4; 38,580...
Für n = 1; 2; 3; 4; 5 gibt n! = 1; 2; 6; 24; 120

Daraus bin ich leider noch nicht schlauer geworden. Haben Sie noch mehr / konkretere Hinweise für mich?






Bezug
                        
Bezug
Abschätzung n!: Antwort
Status: (Antwort) fertig Status 
Datum: 18:12 Di 03.02.2015
Autor: statler

Hallo!
In 2a kannst du jeden Faktor mit Hilfe der 1. Ungl. von 3 nach oben abschätzen, das gibt umgeformt die Ungleichung von 1, in der die 3 vorkommt; in 2b kannst du jeden Faktor mit Hilfe der 2. Ungl. von 3 nach unten abschätzen, das gibt umgeformt die Ungleichung von 1, in der die 2 vorkommt.
Gruß Dieter
PS: Wir sind hier üblicherweise per du.

Bezug
                                
Bezug
Abschätzung n!: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Di 03.02.2015
Autor: sandroid

Danke Dieter für deine zur Lösung führenden Hinweise!

Und danke natürlich auch für das Du.

Gruß,
sandroid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de