www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Abschätzung unklar
Abschätzung unklar < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzung unklar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mi 12.12.2007
Autor: abi2007LK

Hallo nochmal,

sorry - momentan "nerve" ich euch recht viel - aber mit den Folgen/Reihen habe ich halt so meine Probleme - ich arbeite allerdings daran :)

Es sei [mm] (a_{n})_{n \in \IN} [/mm] eine Folge, die gegen ein a [mm] \in \IR [/mm] konvergiere. Man beweise, dass dann die Folge [mm] (b_{n})_{n \in \IN} [/mm] definiert durch

[mm] b_{n} [/mm] := [mm] \frac{1}{n+1}(a_{0} [/mm] + [mm] a_{1} [/mm] + ... + [mm] a_{n}) [/mm] für alle n [mm] \in \IN [/mm]

ebenfalls gegen a konvergiere.

Die Musterlösung sieht so aus:

Wir behandeln zunchst den Fall, dass der Grenzwert a der Folge [mm] (a_{n})_{n \in \IN} [/mm] gleich 0 ist.

Sei [mm] \varepsilon [/mm] > 0 beliebig gegeben, Dann gibt es ein M [mm] \in \IN, [/mm] so dass

[mm] |a_{n}| [/mm] < [mm] \frac{\varepsilon}{2} [/mm] für alle n [mm] \ge [/mm] M

Wir setzen

c := [mm] a_{0} [/mm] + [mm] a_{1} [/mm] + ... + [mm] a_{M} [/mm]

dann gilt für alle n > M

[mm] |b_{n}| [/mm] = [mm] \frac{1}{n+1} [/mm] |c + [mm] a_{M+1} [/mm] + ... + [mm] a_{n}| [/mm] < [mm] \frac{1}{n+1} [/mm] |c| + [mm] \frac{n-M}{n+1}\frac{\varepsilon}{2} [/mm]

Der Beweis geht noch weiter - aber den letzten Schritt verstehe ich nicht. c "beinhaltet" ja alle Glieder von [mm] a_{n}, [/mm] die kleiner als [mm] \frac{\varepsilon}{2} [/mm] sind - aber wie kommt man da auf diese Abschätzung?


        
Bezug
Abschätzung unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mi 12.12.2007
Autor: piet.t


> Hallo nochmal,
>  
> sorry - momentan "nerve" ich euch recht viel - aber mit den
> Folgen/Reihen habe ich halt so meine Probleme - ich arbeite
> allerdings daran :)

Kein Problem, dafür sind wir ja da....;-)

>  
> Es sei [mm](a_{n})_{n \in \IN}[/mm] eine Folge, die gegen ein a [mm]\in \IR[/mm]
> konvergiere. Man beweise, dass dann die Folge [mm](b_{n})_{n \in \IN}[/mm]
> definiert durch
>  
> [mm]b_{n}[/mm] := [mm]\frac{1}{n+1}(a_{0}[/mm] + [mm]a_{1}[/mm] + ... + [mm]a_{n})[/mm] für
> alle n [mm]\in \IN[/mm]
>  
> ebenfalls gegen a konvergiere.
>  
> Die Musterlösung sieht so aus:
>  
> Wir behandeln zunchst den Fall, dass der Grenzwert a der
> Folge [mm](a_{n})_{n \in \IN}[/mm] gleich 0 ist.
>  
> Sei [mm]\varepsilon[/mm] > 0 beliebig gegeben, Dann gibt es ein M
> [mm]\in \IN,[/mm] so dass
>  
> [mm]|a_{n}|[/mm] < [mm]\frac{\varepsilon}{2}[/mm] für alle n [mm]\ge[/mm] M
>  
> Wir setzen
>  
> c := [mm]a_{0}[/mm] + [mm]a_{1}[/mm] + ... + [mm]a_{M}[/mm]
>  
> dann gilt für alle n > M
>  
> [mm]|b_{n}|[/mm] = [mm]\frac{1}{n+1}[/mm] |c + [mm]a_{M+1}[/mm] + ... + [mm]a_{n}|[/mm] <
> [mm]\frac{1}{n+1}[/mm] |c| + [mm]\frac{n-M}{n+1}\frac{\varepsilon}{2}[/mm]
>  
> Der Beweis geht noch weiter - aber den letzten Schritt
> verstehe ich nicht.
> c "beinhaltet" ja alle Glieder von
> [mm]a_{n},[/mm] die kleiner als [mm]\frac{\varepsilon}{2}[/mm] sind

Nein, tut es nicht. c ist ja die Summe über den Anfang der Folge [mm] (a_n), [/mm] und das sind ja gerade die Folgenglieder, über die man gar nichts sagen kann. Die könnten beliebig klein aber auch beliebig groß werden. Nachdem wir über die aber gerade nichts sagen können sagen wir einfach, dieser Teil der Summe ist irgend ein c (das natürlich von M abhängt).

> - aber wie kommt man da auf diese Abschätzung?
>  

Gehen wir das nochmal Schritt für Schritt durch:
Zuerst Teilen wir die Summe in zwei Teile: die ersten M+1 Summanden und den Rest:
[mm]\frac{1}{n+1} |a_0 + \ldots + a_M + a_{M+1} + \ldots + a_n| \le \frac{1}{n+1} (|a_0 + \ldots + a_M | + | a_{M+1} + \ldots + a_n| )[/mm]
Das ist ja gerade die Dreiecksungleichung.
Wie oben schon gesagt nennen wir die erste Teilsumme jetzt einfach mal c:
[mm]\frac{1}{n+1} (|a_0 + \ldots + a_M | + | a_{M+1} + \ldots + a_n| )= \frac{1}{n+1} (|c| + | a_{M+1} + \ldots + a_n| )[/mm]
Für die [mm] a_i, [/mm] die wir jetzt noch übrig haben wissen wir aber, dass jedes von ihnen betragsmäßig kleiner als  [mm] \frac{\varepsilon}{2} [/mm] ist. Von denen haben wir aber genau (n-M) Stück, so dass die zweite Hälte der Summe sicher kleiner ist als [mm] $(n-M)\cdot \frac{\varepsilon}{2}$. [/mm] Also insgesamt:
[mm]\frac{1}{n+1} (|c| + | a_{M+1} + \ldots + a_n| )< \frac{1}{n+1} (|c| + (n-M)\cdot \frac{\varepsilon}{2} )[/mm]
So, jetzt noch das [mm] \frac{1}{n+1} [/mm] reinmultiplizieren und schon steht die gewünschte Abschätzung da.

Alles klar?

Gruß

piet

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de