www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Abschätzungen
Abschätzungen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschätzungen: Verständnis
Status: (Frage) beantwortet Status 
Datum: 23:02 Mo 01.08.2011
Autor: paulpanter

Aufgabe
Aus [mm] |x-x_0|< \delta [/mm] =>

|x| > [mm] \delta [/mm] - [mm] |x_0| [/mm]
|x| < [mm] \delta [/mm] + [mm] |x_0| [/mm]

Frage 1: Wie kommt man darauf? Wenn ich eine Fallunterscheidung mache und Äquivalenzumformungen durchführe fehlen eben komplett die Beträge :(


Frage 2 zu Epsilon-Delta-Kriterium: Darf man auch x zulassen, welche nicht im Definitionsbereich der zu untersuchenden Funktion liegen? Ich meine durch Delta schränkt man das Intervall von x ein und dann kann es sein, dass etwas undefiniertes drinliegt. :(




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Abschätzungen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:23 Di 02.08.2011
Autor: DM08

Kennst du die Dreiecksungleichung ?

[mm] |a+b|\le|a|+|b|\ \forall a,b\in\IC [/mm]

Ich komme jedoch nicht drauf.

[mm] |x-x_0|\le|x|+|x_0|<\delta\gdw |x|<\delta-|x_0| [/mm]

Vielleicht hilft dir das weiter

MfG

Bezug
        
Bezug
Abschätzungen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Di 02.08.2011
Autor: blascowitz

Guten Morgen,

ich denke, das man hier die Dreiecksungleichung nach unten verwendet wird.

[mm] $\delta>|x-x_{0}|\geq \biggl| |x|-|x_{0}| \biggl|$ [/mm]

Jetzt löse den betrag einmal positiv und dann einmal negativ auf, das sollte die Ungleichungen liefern.

Zur zweiten Frage: $x$, die nicht im Definitionsbereich der Funktion liegen, kann man nicht verwenden, denn wie will man sonst [mm] $|f(x)-f(x_{0})|<\epsilon$ [/mm] prüfen, wenn $x$ nicht im Definitionsbereich liegt.

Außerdem geht Stetigkeit andersherum: Du gibst dir ein [mm] $\epsilon$ [/mm] vor.
Und dazu gibt es dann ein [mm] $\delta(x_{0})$, [/mm] sodass aus $ [mm] |x-x_{0}|<\delta$ [/mm] folgt, dass [mm] $|f(x)-f(x_{0})|<\epsilon$. [/mm] Das Delta kann von der Stelle abhängen, das heißt das wird so gewählt, dass die Abschätzung oben funktioniert und alle $x$ im Definitionsbereich liegen. Sonst ist die Funktion an der Stelle unstetig

Viele Grüße

Bezug
        
Bezug
Abschätzungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Di 02.08.2011
Autor: fred97


> Aus [mm]|x-x_0|< \delta[/mm] =>
>
> |x| > [mm]\delta[/mm] - [mm]|x_0|[/mm]

Das gilt im allgemeinen nicht ! Woher hast Du diese falsche Ungleichung ?
Dass sie falsch ist sieht man z.B. , wenn [mm] x_0=0 [/mm] ist.




>  |x| < [mm]\delta[/mm] + [mm]|x_0|[/mm]



Das folgt aus

           [mm] $|x|=|x-x_0+x_0| \le |x-x_0|+|x_0| [/mm] < [mm] \delta +|x_0|$ [/mm]

FRED

>  Frage 1: Wie kommt man darauf? Wenn ich eine
> Fallunterscheidung mache und Äquivalenzumformungen
> durchführe fehlen eben komplett die Beträge :(
>  
>
> Frage 2 zu Epsilon-Delta-Kriterium: Darf man auch x
> zulassen, welche nicht im Definitionsbereich der zu
> untersuchenden Funktion liegen? Ich meine durch Delta
> schränkt man das Intervall von x ein und dann kann es
> sein, dass etwas undefiniertes drinliegt. :(
>  
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de