www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Abschluss - Inklusion
Abschluss - Inklusion < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschluss - Inklusion: Definition nicht hinreichend ?
Status: (Frage) beantwortet Status 
Datum: 10:44 Di 08.05.2012
Autor: clemenum

Aufgabe
Zeigen Sie für Mengen $A,B [mm] \subset [/mm] X $ eines toplogischen Raumes $X:$
[mm] $\overline{A \cap B} \subset \overline{A} \cap \overline{B} [/mm] $
Warum gilt hier nicht die Gleichheit?

Nun, wir haben folgende Definition bezüglich des Abschlusses gelernt, welche ich hier gleich implizit auf das Beispiel anwenden möchte.
Zu zeigen wäre also:
[mm] $x\in \overline{A \cap B}: \forall U\in \mathcal{U}(x): U\cap \overline{A\cap B}\neq \emptyset \Rightarrow x\in \overline{A \cap B}: \forall U\in \mathcal{U}(x): U\cap \overline{A}\cap \overline{B}\neq \emptyset [/mm] $

Aber, ich sehe wirklich nicht, welche Schlussfolgerungsschritte ich dazwischen machen sollte. Ich kann nur ein paar anschaulich - intuitive Erklärungen abgeben, warum die Folgerung stimmt:
In [mm] $S_1 :=\overline{A\cap B}$ [/mm] kann es sein, dass die rechte Intrvallklammer von A bzw. die linke Intervallklammer von B offen bleibt, womit diese beiden Elemente im Abschluss nicht enthalten wären, wohl aber bei:
In [mm] $S_2 [/mm] := [mm] \overline{A } \cap \overline{B} [/mm] $ schließe ich bei jedem Intervall alle Intervallklammern, es bleibt keine offen, damit ist jedes Element von [mm] $S_1$ [/mm]  zwangsläufig in [mm] $S_2,$ [/mm] nicht aber umgekehrt, weil eben an der Grenze von $A$ bzw. am Anfang von $B$ es Schwierigkeiten geben könnte.

Frage: Wie kann ich das ganze formaler zeigen?

        
Bezug
Abschluss - Inklusion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Di 08.05.2012
Autor: fred97


> Zeigen Sie für Mengen [mm]A,B \subset X[/mm] eines toplogischen
> Raumes [mm]X:[/mm]
> [mm]\overline{A \cap B} \subset \overline{A} \cap \overline{B}[/mm]
> Warum gilt hier nicht die Gleichheit?
>  Nun, wir haben folgende Definition bezüglich des
> Abschlusses gelernt, welche ich hier gleich implizit auf
> das Beispiel anwenden möchte.
>  Zu zeigen wäre also:
>  [mm]x\in \overline{A \cap B}: \forall U\in \mathcal{U}(x): U\cap \overline{A\cap B}\neq \emptyset \Rightarrow x\in \overline{A \cap B}: \forall U\in \mathcal{U}(x): U\cap \overline{A}\cap \overline{B}\neq \emptyset[/mm]


Die Def. des Abschlußes hast Du nicht richtig !

Es gilt: x [mm] \in \overline{M} \gdw [/mm]  für jede Umgebung U von x gilt: U [mm] \cap [/mm] M [mm] \ne \emptyset. [/mm]

Sei also x [mm] \in \overline{A \cap B}. [/mm] Ist nun U eine Umgebung von x, so gilt:

               U [mm] \cap(A \cap [/mm] B) [mm] \ne \emptyset. [/mm]

Dann ist aber  U [mm] \cap [/mm] A  [mm] \ne \emptyset [/mm] und U [mm] \cap [/mm] B  [mm] \ne \emptyset [/mm]

Fazit:  x [mm] \in \overline{A} [/mm] und  x [mm] \in \overline{B} [/mm] .

FRED

>
> Aber, ich sehe wirklich nicht, welche
> Schlussfolgerungsschritte ich dazwischen machen sollte. Ich
> kann nur ein paar anschaulich - intuitive Erklärungen
> abgeben, warum die Folgerung stimmt:
> In [mm]S_1 :=\overline{A\cap B}[/mm] kann es sein, dass die rechte
> Intrvallklammer von A bzw. die linke Intervallklammer von B
> offen bleibt, womit diese beiden Elemente im Abschluss
> nicht enthalten wären, wohl aber bei:
> In [mm]S_2 := \overline{A } \cap \overline{B}[/mm] schließe ich bei
> jedem Intervall alle Intervallklammern, es bleibt keine
> offen, damit ist jedes Element von [mm]S_1[/mm]  zwangsläufig in
> [mm]S_2,[/mm] nicht aber umgekehrt, weil eben an der Grenze von [mm]A[/mm]
> bzw. am Anfang von [mm]B[/mm] es Schwierigkeiten geben könnte.
>
> Frage: Wie kann ich das ganze formaler zeigen?  


Bezug
                
Bezug
Abschluss - Inklusion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:06 Di 08.05.2012
Autor: clemenum

Ohh, ich sehe es! :-O

Vielen Dank für deine Hilfe, Fred :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de