www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Abschluss einer Teilmenge
Abschluss einer Teilmenge < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abschluss einer Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Di 20.04.2010
Autor: anetteS

Aufgabe
Geben Sie ein Beispiel an für: Eine echte Teilmenge M von [mm] \IR, [/mm] deren Abschluss ganz  [mm] \IR [/mm] ist.

Hallo, ich bins mal wieder;-).
Wir hatten als Definition von Abschluss: [mm] \overline{M} [/mm] = [mm] \cap [/mm] A, mit A [mm] \subset [/mm] M und A abgeschlossen.
Allerdings kann ich mir unter dem Abschluss noch nichts vorstellen. Hätte jemand vielleicht ein Beispiel und einen Tipp, wie ich an die obige Aufgabe herangehen kann.

Vielen Dank und viele Grüße,
Anette.

        
Bezug
Abschluss einer Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Di 20.04.2010
Autor: fred97

Es ist z. B. $ [mm] \overline{M}= [/mm] M [mm] \cup [/mm] H(M) $, wobei H(M) die Menge der Häufungspunkte von M ist.

Vielleicht kannst Du die jetzt [mm] \overline{M} [/mm] besser vorstellen.

Zu Deiner Aufgabe: denk mal an rationale Zahlen

FRED

Bezug
                
Bezug
Abschluss einer Teilmenge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:55 Di 20.04.2010
Autor: anetteS

Ah, die Definition ist verständlicher, also von M=]1,7] wäre der Abschluss [1,7], also M vereinigt mit den Häufungspunkten von M, was hier 1 wäre. Ist das richtig?

Zur Aufgabe, wenn ich an [mm] \IQ [/mm] denke, dann hat [mm] \IQ [/mm] als Häufungspunkte die reellen Zahlen und der Abschluss wäre dann ganz [mm] \IR. [/mm] Richtig?

Vielen, vielen Dank fred97, du hast mir schnell und gut weiter geholfen.
Viele Grüße,
Anette

Bezug
                        
Bezug
Abschluss einer Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Di 20.04.2010
Autor: fred97


> Ah, die Definition ist verständlicher, also von M=]1,7]
> wäre der Abschluss [1,7], also M vereinigt mit den
> Häufungspunkten von M, was hier 1 wäre. Ist das richtig?


Nicht ganz. Ist M=]1,7] , so ist H(M) = [1,7]

>  
> Zur Aufgabe, wenn ich an [mm]\IQ[/mm] denke, dann hat [mm]\IQ[/mm] als
> Häufungspunkte die reellen Zahlen und der Abschluss wäre
> dann ganz [mm]\IR.[/mm] Richtig?

Ja

FRED

>  
> Vielen, vielen Dank fred97, du hast mir schnell und gut
> weiter geholfen.
>  Viele Grüße,
>  Anette


Bezug
        
Bezug
Abschluss einer Teilmenge: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Di 20.04.2010
Autor: Blech

Hi,

> Geben Sie ein Beispiel an für: Eine echte Teilmenge M von
> [mm]\IR,[/mm] deren Abschluss ganz  [mm]\IR[/mm] ist.
>  Hallo, ich bins mal wieder;-).
>  Wir hatten als Definition von Abschluss: [mm]\overline{M}[/mm] =
> [mm]\cap[/mm] A, mit A [mm]\subset[/mm] M und A abgeschlossen.

Das ist falsch herum.

[mm] $\overline [/mm] M = [mm] \bigcap \{A\ |\ M\subseteq A,\ A\ \text{abgeschlossen}\}$ [/mm]

Man beachte die Richtung: [mm] $M\subseteq [/mm] A$

[mm] $\overline [/mm] M$ ist die kleinste abgeschlossene Menge, die M enthält.

ciao
Stefan

Bezug
                
Bezug
Abschluss einer Teilmenge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Di 20.04.2010
Autor: anetteS

Hallo Blech, danke für deine Korrektur, dann stand es wohl falsch in meinem Skript:-(. Aber mit der Definition von fred97 komme ich sowieso besser zu Recht. Nochmal vielen Dank dafür, fred97.

Viele Grüße und bis zum nächsten Mal:-)
Anette.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de