www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Absolute Konvergenz
Absolute Konvergenz < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Absolute Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:43 Mi 16.04.2008
Autor: Charlie1984

Aufgabe
1. a) Man zeige die absolute Konvergenz von [mm] \integral_{\pi}^{\infty}{\bruch{cos(x)}{x^{2}} dx} [/mm]
b) Man zeige die Konvergenz von [mm] \integral_{\pi}^{\infty}{\bruch{cos(x)}{x} dx}. [/mm]
c) Man berechne das Integral [mm] \integral_{\pi}^{\infty}{\bruch{1}{sin(x)+cos(x)} dx} [/mm]

Hallo!
Also mein Analysiswissen ist recht spärlich und auch das Verständnis ist teilweise recht problematisch;-).

Ich bräuchte bei den obigen Aufgaben ein paar Hilfestellungen.

zu a) (ich weiss nicht ob ich überhauptverstanden hab was absolute Koivergenz ist.)
naja..ich hab : [mm] \integral_{\pi}^{\infty}{\bruch{cos(x)}{x^{2}} dx} [/mm]
Dann ist [mm] \integral_{\pi}^{\infty}{\bruch{-1}{x^{2}} dx}\le\integral_{\pi}^{\infty}{\bruch{cos(x)}{x^{2}} dx}\le\integral_{\pi}^{\infty}{\bruch{1}{x^{2}} dx} [/mm]
da [mm] \vmat{ \integral_{\pi}^{\infty}{\bruch{-1}{x^{2}} }} [/mm] = [mm] \integral_{\pi}^{\infty}{\bruch{1}{x^{2}} dx} [/mm]

Dann folgere ich : [mm] \integral_{\pi}^{\infty}{\bruch{1}{x^{2}} dx}\le\integral_{\pi}^{\infty}{\bruch{cos(x)}{x^{2}} dx}\le\integral_{\pi}^{\infty}{\bruch{1}{x^{2}} dx} \integral_{\pi}^{\infty}{\bruch{1}{x^{2}} dx} [/mm] = [mm] 0-\bruch{1}{\pi} [/mm]

ist das so richtig ?
zu b)..ist das nicht genau das gleiche ?
und zu c ) uiih..das bräuchte ich auch nen kleinen ansatz(denke mal geschickt substituieren)

Vielen Dank für ein paar Tipps !

Grüße CHarlie

        
Bezug
Absolute Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 12:08 Mi 16.04.2008
Autor: generation...x

Kleine Korrekturen: 1) Du solltest den Betrag in das Integral ziehen (macht aber im Ergebnis keinen Unterschied), 2) Was war nochmal die Stammfunktion von [mm]\bruch{1}{x^2}[/mm]? (Hinweis: Vorzeichen). Sonst sieht's gut aus.

Zur b): Die konvergiert nicht absolut. Versuchs mit demselben Ansatz wie bei der a). Dann hast ein Integral über [mm]\bruch{1}{x}[/mm]. Stammfunktion ist [mm]ln(x)[/mm], was aber nicht beschränkt ist! Also musst du dir etwas anderes überlegen.

Zur c) fällt mir auch gerade nichts ein...

Bezug
                
Bezug
Absolute Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:12 Mi 16.04.2008
Autor: Charlie1984

Vielen Dank für die schnelle antwort ...super..dann habe ich es doch verstanden.
Es ist klar das da ein Minus verloren gegangen ist ;-)
Dann werde ich mal weiter machen!

thx

Bezug
                
Bezug
Absolute Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:03 Mi 16.04.2008
Autor: Charlie1984

Habe jetzt die a)  fertig und bräuchte noch nen kleinen tipp zu
- b)..irgendwie komm ich da net weiter trotz des guten Tipps
- c)naja also ich hab schon einiges versucht ..aber da kommt nur murks raus...
Könnte mir ja jmd nochmal ne kleine Hilfestellung geben ?

Thx Charlie

Bezug
                        
Bezug
Absolute Konvergenz: Tipp zur b)
Status: (Antwort) fertig Status 
Datum: 14:25 Mi 16.04.2008
Autor: generation...x

Mir ist da noch etwas eingefallen:
Du sollst ja nur die Konvergenz zeigen, nichts ausrechnen. Versuchs mal mit partieller Integration in Kombination mit dem, was du zur a) schon gezeigt hast (damit dürfte wohl klar sein, welchen Teil man ableiten muss...) bzw. dem dort verwendeten Ansatz.

Bezug
                        
Bezug
Absolute Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 18.04.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de