www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abst. windschiefer Geraden
Abst. windschiefer Geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abst. windschiefer Geraden: Lösung korrekt?
Status: (Frage) beantwortet Status 
Datum: 16:39 Fr 03.10.2008
Autor: RuffY

Aufgabe
Berechne den Abst. folgender, gegebener windschiefer Geraden:

[mm] g1=\vektor{3 \\ -1 \\ 2}+t*\vektor{2 \\ 4 \\ 10} [/mm]

[mm] g2=\vektor{-1 \\ 5 \\ 23}+s*\vektor{-4 \\ 4 \\ 6} [/mm]
Hallo, im Zuge meiner Vorbereitung auf eine Klausur habe ich, da wir keine Formelsammlung nutzen dürfen, mal die Formel für den Abst. zweier windsch. Geraden hergeleitet und berechnet:

für [mm] d\approx [/mm] 30,76

Ist's so richtig?

Grüße aus HH

Sebastian

        
Bezug
Abst. windschiefer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Fr 03.10.2008
Autor: Teufel

Hi!

Ist leider nicht richtig. Wie bist du denn vorgegangen?

[anon] Teufel

Bezug
                
Bezug
Abst. windschiefer Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Fr 03.10.2008
Autor: RuffY

...schade :-(

Ich habe aus den Richtungsvektoren zuerst den Normalenvektor [mm] \vec{n} [/mm] gebildet:

[mm] \vec{n}=\vektor{ -16 \\ -52 \\ 24} [/mm]

Der nächste Schritt war, dass ich den Verbindungsvektor der beiden Aufpunkte der Geraden gebildet habe:

[mm] \vec{AB}=\vektor{ 4 \\ -6 \\ -1} [/mm]

Aus dem Zusammenhang des Skalarproduktes:

[mm] \vec{a}*\vec{b}=\vec{b_{a}}*|\vec{a}| [/mm]

habe ich dann [mm] |\vec{b_{a}}|=d=\bruch{|\vec{a}|*|\vec{b}|}{|\vec{a}|} [/mm]

mein [mm] \vec{a}=\vec{AB} [/mm] und [mm] \vec{b}=\vec{n} [/mm]

Ich hoffe, dass meine Herleitung korrekt ist?




Bezug
                        
Bezug
Abst. windschiefer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Fr 03.10.2008
Autor: Al-Chwarizmi


> ...schade :-(
>  
> Ich habe aus den Richtungsvektoren zuerst den
> Normalenvektor [mm]\vec{n}[/mm] gebildet:
>  
> [mm]\vec{n}=\vektor{ -16 \\ -52 \\ 24}[/mm]     [ok]
>  
> Der nächste Schritt war, dass ich den Verbindungsvektor der
> beiden Aufpunkte der Geraden gebildet habe:
>  
> [mm]\vec{AB}=\vektor{ 4 \\ -6 \\ -1}[/mm]       [notok]


Bezug
                        
Bezug
Abst. windschiefer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Fr 03.10.2008
Autor: Al-Chwarizmi

Guten Abend Sebastian,

ich habe diesen Text jetzt nochmals durchgesehen


>  
> Ich habe aus den Richtungsvektoren zuerst den
> Normalenvektor [mm]\vec{n}[/mm] gebildet:
>  
> [mm]\vec{n}=\vektor{ -16 \\ -52 \\ 24}[/mm]       [ok]
>  
> Der nächste Schritt war, dass ich den Verbindungsvektor der
> beiden Aufpunkte der Geraden gebildet habe:
>  
> [mm]\vec{AB}=\vektor{ 4 \\ -6 \\ -1}[/mm]           [ok]

        (ich habe zwar entgegengesetzte Vorzeichen, aber
         das macht nichts - du hast die Punkte andersrum
         bezeichnet  oder allenfalls A-B statt B-A gerechnet)
  

> Aus dem Zusammenhang des Skalarproduktes:
>  
> [mm]\vec{a}*\vec{b}=\vec{b_{a}}*|\vec{a}|[/mm]      [ok]
>  
> habe ich dann
> [mm]|\vec{b_{a}}|=d=\bruch{|\vec{a}|*|\vec{b}|}{|\vec{a}|}[/mm]

         So stimmt dies nicht.  Es muss heißen:

           [mm]|\vec{b_{a}}|=d=\bruch{|\vec{a}*\vec{b}|}{|\vec{a}|}[/mm]

         Mach dir klar, dass das keineswegs dasselbe ist !

>  
> mein [mm]\vec{a}=\vec{AB}[/mm] und [mm]\vec{b}=\vec{n}[/mm]

         Das müsstest du genau umgekehrt machen:
         Nicht [mm] \vec{n} [/mm] auf [mm] \overrightarrow{AB} [/mm] projizieren,
         sondern [mm] \overrightarrow{AB} [/mm] auf [mm] \vec{n} [/mm]


LG     [winken]





Bezug
        
Bezug
Abst. windschiefer Geraden: anderes Ergebnis
Status: (Antwort) fertig Status 
Datum: 17:35 Fr 03.10.2008
Autor: Al-Chwarizmi


> Berechne den Abst. folgender, gegebener windschiefer
> Geraden:
>  
> [mm]g1=\vektor{3 \\ -1 \\ 2}+t*\vektor{2 \\ 4 \\ 10}[/mm]
>  
> [mm]g2=\vektor{-1 \\ 5 \\ 23}+s*\vektor{-4 \\ 4 \\ 6}[/mm]

  

> für [mm]d\approx[/mm] 30,76
>  
> Ist's so richtig?



hallo Sebastian,

ich erhalte etwas anderes:  [mm] d\approx [/mm]  4.305


Bezug
                
Bezug
Abst. windschiefer Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Fr 03.10.2008
Autor: RuffY

ich glaube das Problem liegt in den vorgegebenen Geraden

[mm] g1=\vektor{3 \\ -1 \\ 2}+t\cdot{}\vektor{2 \\ 4 \\ 10} [/mm]

ist richtig! Aber...

[mm] g2=\vektor{-1 \\ 5 \\ 3}+s\cdot{}\vektor{-4 \\ 4 \\ 6} [/mm]

ist die z-Koordinate vom Aufpunkt der Geraden nicht 23 sondern 3...

Stimmt's nun?!

Bezug
                        
Bezug
Abst. windschiefer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Fr 03.10.2008
Autor: Al-Chwarizmi


> ich glaube das Problem liegt in den vorgegebenen Geraden
>  
> [mm]g1=\vektor{3 \\ -1 \\ 2}+t\cdot{}\vektor{2 \\ 4 \\ 10}[/mm]
>  
> ist richtig! Aber...
>  
> [mm]g2=\vektor{-1 \\ 5 \\ 3}+s\cdot{}\vektor{-4 \\ 4 \\ 6}[/mm]
>
> ist die z-Koordinate vom Aufpunkt der Geraden nicht 23
> sondern 3...

     Aha, das macht natürlich schon etwas aus...
  

> Stimmt's nun?!

    Mit den neuen Daten liefert mein Rechner:  d [mm] \approx [/mm] 3.767

    Dein ursprünglicher Wert d>30 kann sicher nicht stimmen,
    da schon der Abstand der Stützpunkte der beiden Geraden
    nur  7.28 Längeneinheiten misst. Der kürzeste Abstand der
    Geraden kann sicher nicht größer sein...

LG


Bezug
                                
Bezug
Abst. windschiefer Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:32 Fr 03.10.2008
Autor: RuffY

mein Fehler war bei der Benennung der Vectoren, d.h. [mm] \vec{n}=\vec{a}... [/mm] so stimmts!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de