www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstände Windschiefer geraden
Abstände Windschiefer geraden < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstände Windschiefer geraden: Frage, Idee
Status: (Frage) beantwortet Status 
Datum: 18:50 Mo 07.12.2009
Autor: Nine89

Aufgabe
Es ist jeweis die gegenseitige Lage der geraden g1 und g2 zu untersuchen und ihr Abstand zu ermitteln.

g1: [mm] \vec{x}= \vektor{-7 \\ 5 \\ -1} [/mm] + r [mm] \vektor{4 \\ 0 \\ -3} [/mm]
g2: [mm] \vec{x}= \vektor{-1 \\ 2 \\ 7} [/mm] + t [mm] \vektor{8 \\ 1 \\ -6} [/mm]  

Hallo also ich habe diese Aufgabe heute von einer Mitschülerin abgeschrieben, weil ich in der letzten Mathestunde gefehlt habe. Sie ist Klausur relevant und ich kann sie auch halbwegs nachvollziehen. Aber einige Rechnungen bereiten mir Probleme. Ich habe dahinter immer ein rotes ? gemacht. Es wäre nett wenn mir jemand diese Rechnungen schrittweise Erklären könnte. Vielen Dank schon mal im Vorraus.


1: Weil die Richtiungs vektoren [mm] \vec{v1}=\vektor{4 \\ 0 \\ -3} [/mm] und [mm] \vec{v2}=\vektor{8 \\ 1 \\ -6} [/mm] kein vielfaches voneinander sind, verlaufen g1 und g2 nicht parallel zueinander.

2: d= [mm] \bruch{|(\vec{v1} \* \vec{v2}) * \vec{u1u2}| }{|\vec{v1} x \vec{v2}|} [/mm]

Mit [mm] \vec{u1u2} [/mm] = [mm] \vec{u2} [/mm] - [mm] \vec{u1} [/mm] = [mm] \vektor{-1 \\ 2 \\ 7} [/mm] - [mm] \vektor{-7 \\ 5 \\ -1} [/mm] = [mm] \vektor{6 \\ -3 \\ 8} [/mm] und [mm] \vec{v1} \* \vec{v2} [/mm] = [mm] \vektor{3 \\ 0 \\ 4} [/mm] warum dieses Ergebniss?

also [mm] |\vec{v1} [/mm] x [mm] \vec{v2}| [/mm] = 5

also d = [mm] \bruch{|(\vec{v1} \* \vec{v2}) * \vec{u1u2}| }{|\vec{v1} x \vec{v2}|}= \bruch{\vmat{ 4 & 8 & 6 \\ 0 & 1 & -3 \\ -3 & -6 & 8 }}{5} [/mm] wie kommt man auf diese Determinante? = [mm] \bruch{50 }{5} [/mm] ? = 10 FE

Liebe Grüße
Nine


        
Bezug
Abstände Windschiefer geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Mo 07.12.2009
Autor: leduart

Hallo
Das erste Fragezeichen ist einfach das Vektorprodukt von v1 und v2 ausgerechnet. sieh nach, wie man das macht.
warum ihr statt u1-u2 u1u2 schreibt ist mir unklar, aber die Determinante brauchst du nicht, da du ja schon [mm] v1\timesv2 [/mm] und u1-u2 hast und davon das Skalarprodukt. wenn man ein Vektorprodukt skalar mit nem Vektor mult. kann man das ganze als Determinante schreiben. man kann es aber genausogut einzeln rechnen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de