www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Abstände von Vektoren
Abstände von Vektoren < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstände von Vektoren: Allgemein zu Vektoren
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 26.06.2007
Autor: headbanger

Aufgabe
allgemeine fragen

hi Leute,

ich lerne gerade n bischen Mathe und ich kapiere nicht, wie man den Abstand von 2 Punkten auf einem Vektor ausrechnet.

Und, noch eine Frage zur Winkelberechnung:

es heißt ja: [mm] \overrightarrow{AB}=I\overrightarrow{A}I [/mm] x [mm] I\overrightarrow [/mm] {B} x cos [mm] \alpha [/mm]

das wird dann umgewandelt

[mm] a_{1*}b_{1}+a_{2}*b_{2}+a_{3}*b_{3} [/mm]  geteilt durch (Bruch) [mm] \wurzel{I\vec{a}I + I\vec{b}I} [/mm]

wieso wird das Skalarprodukt hier durch die Vektorenlängen geteilt?

was sagt das skalarprodukt aus?

entschuldigung, wenn ich die frage etwas unübersichtlich gestellt habe, aber ich habe noch etwas schwierigkeiten mit der tech-schreibweise.

mfg

tobi

        
Bezug
Abstände von Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Di 26.06.2007
Autor: leduart

Hallo
1. Der Abstand bestimmt sich einfach aus dem Pythagoras, zeichne erst mal 2 Punkte in der Ebene, dann zeichne die Differenz ihrer x- und y- Komponenten ein, du hast ein rechtwinkliges Dreieck.
im Raum ist das entsprechend die "Diagonale" im Quader aus den entsprechenden Komponenten.
zu 2.
wenn du einen Vektor erst mal skalar mit dem Einheitsvektor in x- Richtung multiplizierst, kannst du, wenn du den Vektor (a1,a2) einzeichnest sehen, das [mm] cos\alpha [/mm] zur x- Achse =a1/(Länge des Vektors) ist. also hier [mm] cos\alpha=(1,0)*(a1,a2)/\wurzel{a1^2+a2^2} [/mm]
wenn der Vektor länger wird, aber seine Richtung dieselbe ist natürlich auch der cos derselbe, deshalb, wenn du immer noch jetzt (7,0)*(a1,a2) nimmst musst du auch noch durch den betrag des ersten vektors teilen.
das jetzt auf allgemeine Vektoren anzuwenden geht mir hier zu lang, das stht irgendwo in deinem mathebuch mit ner schönen Zeichnung.
dass der Winkel zwischen 2 Vektoren gleich bleibt, wenn man sie beide irgendwie vergrößert ist aber direkt anschaulich klar. also klar, dass man durch ihre Länge teilen muss.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de