www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Abstand Punkt zu Gerade
Abstand Punkt zu Gerade < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand Punkt zu Gerade: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:58 So 03.02.2013
Autor: Nicco

Hallo zusammen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt!

Ich habe folgende Formel gegeben um den Abstand eines Punktes x von einer Geraden g zu berechnen. Dabei hat die Gerade den Steigungswinkel [mm] \alpha [/mm] und [mm] x_{0} [/mm] ist ein Punkt auf der Geraden:

[mm] [\sin(\alpha) \cos(\alpha)] \cdot (x-x_{0}) [/mm] wobei [mm] x,x_{0} \in R^2 [/mm]

Zu beachten ist, dass das Koordinatensystem der Computergrafik verwendet wird!

Ich habe diese Formel implementiert und alles funktioniert auch wunderbar, nur möchte ich die Formel auch herleiten können.

Ich hoffe, dass mir jemand von euch Starthilfe leisten möchte.

Vielen Dank und Grüsse
Nicco

        
Bezug
Abstand Punkt zu Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 So 03.02.2013
Autor: Diophant

Hallo,

> Ich habe folgende Formel gegeben um den Abstand eines
> Punktes x von einer Geraden g zu berechnen. Dabei hat die
> Gerade den Steigungswinkel [mm]\alpha[/mm] und [mm]x_{0}[/mm] ist ein Punkt
> auf der Geraden:
>
> [mm][\sin(\alpha) \cos(\alpha)] \cdot (x-x_{0})[/mm] wobei [mm]x,x_{0} \in R^2[/mm]
>
> Zu beachten ist, dass das Koordinatensystem der
> Computergrafik verwendet wird!
>
> Ich habe diese Formel implementiert und alles funktioniert
> auch wunderbar, nur möchte ich die Formel auch herleiten
> können.
>
> Ich hoffe, dass mir jemand von euch Starthilfe leisten
> möchte.

Das Problem an der Sache ist zunächst, das der obige Term ein Vektor aus dem [mm] \IR^2 [/mm] ist und somit kein Abstand. Dann solltest du uns noch sagen, was hier als Steigung verstanden werden soll, das ist ein Begriff/Konzept, welches man in der Vektorrechnung üblicherweise nicht verwendet.

Das alles kann so gar nicht funktionieren, sei also so gut und gib die richtige Formel an. :-)


Gruß, Diophant

Bezug
                
Bezug
Abstand Punkt zu Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:21 So 03.02.2013
Autor: Nicco

Hallo Diophant,

Vielen Dank für deine Antwort.

Es sollte eigentlich ein Produkt aus einem Zeilen und einem Spaltenvektor darstellen, also

[mm] $[\sin(\alpha) \cos(\alpha)] \cdot (\textbf{x} [/mm] - [mm] \textbf{x}_{0}) [/mm] = [mm] [\sin(\alpha) \cos(\alpha)] \cdot (\vektor{x \\ y} [/mm] - [mm] \vektor{x_{0} \\ y_{0}}) [/mm] = [mm] [\sin(\alpha) \cos(\alpha)] \cdot \vektor{x-x_{0} \\ y-y_{0}} [/mm] = [mm] \sin(\alpha) \cdot [/mm] (x - [mm] x_{0}) [/mm] + [mm] \cos(\alpha) \cdot [/mm] (y - [mm] y_{0})$ [/mm] wobei [mm] $\textbf{x} [/mm] = [mm] \vektor{x \\ y}, \textbf{x}_{0} [/mm] = [mm] \vektor{x_0 \\ y_0}$. [/mm]

Mit dem Steigungswinkel ist der Winkel gemeint, den die Gerade g mit der positiven x-Achse einschliesst.

Ich gebe noch ein kleines Beispiel an:
[mm] $\alpha [/mm] = 45 [mm] ^\circ$, [/mm] Gerade g ist definiert durch die Endpunkte [mm] $\vektor{2 \\ 5}$ [/mm] und [mm] $\vektor{6 \\ 1}$. [/mm] Also sei [mm] $\textbf{x}_{0} [/mm] = [mm] \vektor{2 \\ 5}$ [/mm]
Ich möchte nun den Abstand des Punktes [mm] $\textbf{x} [/mm] = [mm] \vektor{5 \\ 2}$ [/mm] von der Gerade g bestimmen, also $sin(45) [mm] \cdot [/mm] 3 + cos(45) [mm] \cdot [/mm] (-3) = 0$, der Punkt liegt auf der Geraden g.

Beachte: Koordinatensystem der Computergrafik mit Nullpunkt oben links, positive x-Achse zeigt nach rechts und positive y-Achse zeigt nach unten!

Bitte sag mir, wenn meine Schreibweise falsch ist, ich bin dankbar für jede Kritik!

Vielen Dank und Grüsse
Nicco

Bezug
                        
Bezug
Abstand Punkt zu Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 So 03.02.2013
Autor: leduart

hallo
der Einheits Richtungsvektor der Geraden ist [mm] \vektor{cos(\alpha) \\ -sin(\alpha} [/mm] mit deinen Achsen
damit ist der darauf senkrechte Normalenvektor [mm] \vektor{sin(\alpha)\\ cos(\alpha)} [/mm]

das Skalarprodukt mit dem Differenzvektor [mm] x-x_0 [/mm] ergibt die Projektion des Differenzvektors auf die Normalenrichtungund das ist der Abstand, zeichne es auf!
Gruss leduart

Bezug
                                
Bezug
Abstand Punkt zu Gerade: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:41 So 03.02.2013
Autor: Nicco

Super, vielen Dank leduart!

[Dateianhang nicht öffentlich]


Mit der Projektionsformel erhalte ich dann:

[mm] $\vec{p} [/mm] = [mm] \frac{\overrightarrow{(\textbf{x}-\textbf{x}_{0})}\cdot\vec{n}}{n^2}\cdot\vec{n}$ [/mm]

Die Länge von [mm] $\vec{p}$ [/mm] entspricht in diesem Fall gerade dem Faktor
[mm] $\frac{\overrightarrow{(\textbf{x}-\textbf{x}_{0})}\cdot\vec{n}}{n^2}$ [/mm] weil ich auf die Einheitsnormale projeziert habe, korrekt? Wesshalb auch [mm] $n^2 [/mm] = 1$ also
[mm] $|\vec{p}| [/mm] = [mm] [\sin(\alpha) \cos(\alpha)]\cdot(\textbf{x}-\textbf{x}_{0}). [/mm]

Vielen Dank und Grüsse
Nico

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de