www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Abstand einer Böschung
Abstand einer Böschung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand einer Böschung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:04 Sa 15.05.2010
Autor: RWBK

Aufgabe
[mm] f(x)=\wurzel{x} [/mm]
Steigung= 13°

So ich bin dann wie folgt vorgegangen:
als erstes m=tan 13°=0,23 (Steigung)

[mm] f(x)=\wurzel{x} [/mm]
f´(x)=  [mm] \bruch{1}{2}*x^{ \bruch{1}{2}} [/mm]

das hab ich dann gleich gesetzt da f´(x)=m ist:
DARAUS ERGIBT SICH JA  DANN
[mm] 0,23=\bruch{1}{2}*x^{ \bruch{1}{2}} [/mm]
Raus kommen soll x= 4,73  da komme ich leider nicht drauf wie bekomme ich den die hoch 1/2 weg??

RWBK

        
Bezug
Abstand einer Böschung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 Sa 15.05.2010
Autor: steppenhahn

Hallo,

> [mm]f(x)=\wurzel{x}[/mm]
>  Steigung= 13°
>  So ich bin dann wie folgt vorgegangen:
>  als erstes m=tan 13°=0,23 (Steigung)

OK.

> [mm]f(x)=\wurzel{x}[/mm]
>  f´(x)=  [mm]\bruch{1}{2}*x^{ \bruch{1}{2}}[/mm]

Nein, das fehlt ein Minus:

$f'(x) = [mm] \frac{1}{2}*x^{-\frac{1}{2}} [/mm] = [mm] \frac{1}{2*\sqrt{x}}$ [/mm]

Nun hast du

$0.23 = f'(x) = [mm] \frac{1}{2*\sqrt{x}}$. [/mm]

Jetzt, wo es als Wurzel geschrieben ist - kannst du nun nach x umstellen?

Grüße,
Stefan

Bezug
                
Bezug
Abstand einer Böschung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 Sa 15.05.2010
Autor: RWBK

das minus hab ich vergessen hinzuschreiben das hatte ich . aber ich kriege das nicht nach x umgestellt
komme immer auf 1,31



Bezug
                        
Bezug
Abstand einer Böschung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Sa 15.05.2010
Autor: steppenhahn

Hallo,

> das minus hab ich vergessen hinzuschreiben das hatte ich .
> aber ich kriege das nicht nach x umgestellt
>  komme immer auf 1,31

...Und wie rechnest du, um auf dieses Ergebnis zu kommen?
Fragen bitte als "Fragen" stellen, sonst sieht sie keiner!
Du hast

$0.23 = [mm] \frac{1}{2*\sqrt{x}}$ [/mm]

--> $0.46 = [mm] \frac{1}{\sqrt{x}}$ [/mm]

--> [mm] $\sqrt{x} [/mm] = [mm] \frac{1}{0.46}$. [/mm]

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de