www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Abstand windschiefe Geraden
Abstand windschiefe Geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstand windschiefe Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:36 Sa 30.01.2010
Autor: hase-hh

Aufgabe
Bestimmen Sie den Abstand der windschiefen Geraden (mit den Lotfußpunkten)

g:  [mm] \vec{x} [/mm] = [mm] \vektor{1 \\ 1 \\ 0} [/mm] + [mm] r*\vektor{1 \\ 4 \\ -3} [/mm]

h: [mm] \vec{x} [/mm] =  [mm] s*\vektor{1 \\ 0 \\ -2} [/mm]

Moin,

1. Bisher kannte ich nur die Formel:

d(g,h) = | ( [mm] \vec{q} [/mm] - [mm] \vec{p} )*\vec{n_0} [/mm] |

mit [mm] \vec{n_0} [/mm] = [mm] \bruch{ \vec{u} x \vec{v} }{ | \vec{u} x \vec{v} | } [/mm] .

2. Heute habe ich kennen gelernt

d(g,h) = [mm] \bruch{V_{Spat}}{A_{Grundflaeche}} [/mm]

mit [mm] V_{Spat} [/mm] = ( [mm] \vec{u} [/mm] x [mm] \vec{v} [/mm] ) * [mm] \vec{c} [/mm]

und [mm] A_{Grundflaeche} [/mm] = | [mm] \vec{u} [/mm] x [mm] \vec{v} [/mm] |

wobei mir noch nicht klar ist, wie ich hier [mm] \vec{c} [/mm] bestimmen kann?


3. Unter Einbeziehung der Lotfußpunkte , haben wir das Lotfußpunktverfahren angewandt... aber hier komme ich nicht weiter!!

Der eine Lotfußpunkt ergibt sich aus g

[mm] F_1 [/mm] = [mm] \vektor{1 \\ 1 \\ 0} [/mm] + [mm] r*\vektor{1 \\ 4 \\ -3} [/mm]

der andere aus h

[mm] F_2 [/mm] =   [mm] s*\vektor{1 \\ 0 \\ -2} [/mm]


3.1. Mithilfe des Skalarproduktes ergibt sich...

[mm] \overline{F_1F_2}*\vektor{1 \\ 4 \\ -3} [/mm] = 0

und

[mm] \overline{F_1F_2}*\vektor{1 \\ 0 \\ -2} [/mm] = 0


Ich habe nur die erste Gleichung betrachtet...

[mm] \overline{F_1F_2}*\vektor{1 \\ 4 \\ -3} [/mm] = 0

( [mm] \vektor{0\\0\\0} [/mm] + s * [mm] \vektor{1\\0\\-2} [/mm] - [mm] (\vektor{1 \\ 1 \\ 0} [/mm] + [mm] r*\vektor{1\\4\\-3}))*\vektor{1 \\ 4 \\ -3} [/mm] = 0


Nach Umformung erhalte ich

-5 + 7*s -26 * r = 0

Wie geht es jetzt weiter???


Danke & Gruß



        
Bezug
Abstand windschiefe Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 Sa 30.01.2010
Autor: chrisno


> d(g,h) = | ( [mm]\vec{q}[/mm] - [mm]\vec{p} )*\vec{n_0}[/mm] |
>  
> mit [mm]\vec{n_0}[/mm] = [mm]\bruch{ \vec{u} x \vec{v} }{ | \vec{u} x \vec{v} | }[/mm]
> .
>  
> 2. Heute habe ich kennen gelernt
>  
> d(g,h) = [mm]\bruch{V_{Spat}}{A_{Grundflaeche}}[/mm]
>  
> mit [mm]V_{Spat}[/mm] = ( [mm]\vec{u}[/mm] x [mm]\vec{v}[/mm] ) * [mm]\vec{c}[/mm]
>
> und [mm]A_{Grundflaeche}[/mm] = | [mm]\vec{u}[/mm] x [mm]\vec{v}[/mm] |
>  
> wobei mir noch nicht klar ist, wie ich hier [mm]\vec{c}[/mm]
> bestimmen kann?

Vergleiche die beiden Formeln. Dann siehst Du, wie c zu bestimmen ist. Nimm von jeder Geraden einen beliebigen Punkt und bilde den Differenzvektor.

>
> Nach Umformung erhalte ich
>
> -5 + 7*t -26*s = 0

Nur hieß das s eben noch r und das t war früher mal ein s. Das stört mich weniger, solange Du den Überblick behälst.

>  
> Wie geht es jetzt weiter???
>  

Du hast ja selbst geschrieben, dass Du erst eine Gleichung bearbeitet hast. Nimm die nächste. Dann hast Du zwei Gleichungen mit zwei Umbekannten.

Bezug
                
Bezug
Abstand windschiefe Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:42 So 31.01.2010
Autor: hase-hh


> > 2. Heute habe ich kennen gelernt
>  >  
> > d(g,h) = [mm]\bruch{V_{Spat}}{A_{Grundflaeche}}[/mm]
>  >  
> > mit [mm]V_{Spat}[/mm] = ( [mm]\vec{u}[/mm] x [mm]\vec{v}[/mm] ) * [mm]\vec{c}[/mm]
> >
> > und [mm]A_{Grundflaeche}[/mm] = | [mm]\vec{u}[/mm] x [mm]\vec{v}[/mm] |
>  >  
> > wobei mir noch nicht klar ist, wie ich hier [mm]\vec{c}[/mm]
>  > bestimmen kann?

>  
> Vergleiche die beiden Formeln. Dann siehst Du, wie c zu
> bestimmen ist. Nimm von jeder Geraden einen beliebigen
> Punkt und bilde den Differenzvektor.

Welche beiden Formeln soll ich vergleichen?

Kommt da nicht immer etwas anderes heraus ???

[mm] \vec{c} [/mm] = [mm] \vec{q} -\vec{p} [/mm]   ???

> >  

> > Wie geht es jetzt weiter???
>  >  
>
> Du hast ja selbst geschrieben, dass Du erst eine Gleichung
> bearbeitet hast. Nimm die nächste. Dann hast Du zwei
> Gleichungen mit zwei Umbekannten.

ok

Zwischenergebnis

I.    -5 +7s -26r = 0

jetzt die 2. Gleichung...

[mm] \overline{F_1F_2}*\vektor{1 \\ 0 \\ -2} [/mm] = 0

( [mm] \vektor{0\\0\\0} [/mm] + [mm] s*\vektor{1\\0\\-2} [/mm] - [mm] (\vektor{1 \\ 1 \\ 0} [/mm] + [mm] r*\vektor{1\\4\\-3}))*\vektor{1 \\ 0 \\ -2} [/mm] = 0

II.   -1 + 5*s -7*r = 0

=> r = - [mm] \bruch{2}{9} [/mm]

s = - [mm] \bruch{1}{9} [/mm]

  
Weiter. Berechnung der Lotfußpunkte.

[mm] F_1 [/mm] = [mm] \vektor{1 \\ 1 \\ 0} [/mm] + [mm] r*\vektor{1 \\ 4 \\ -3} [/mm]  => [mm] \vektor{\bruch{7}{9} \\ \bruch{1}{9} \\ \bruch{2}{3}} [/mm]

[mm] F_2 [/mm] =   [mm] s*\vektor{1 \\ 0 \\ -2} [/mm]  =>  [mm] \vektor{- \bruch{1}{9} \\ 0 \\ \bruch{2}{9}} [/mm]

Und schließlich den Abstand von [mm] F_1 [/mm] zu [mm] F_2 [/mm] berechnen...

[mm] d(F_2,F_1) [/mm] = | [mm] \vektor{ \bruch{8}{9}\\ \bruch{1}{9} \\ \bruch{4}{9}} [/mm] | = 1






Bezug
                        
Bezug
Abstand windschiefe Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 08:03 So 31.01.2010
Autor: angela.h.b.


> > > 2. Heute habe ich kennen gelernt
>  >  >  
> > > d(g,h) = [mm]\bruch{V_{Spat}}{A_{Grundflaeche}}[/mm]
>  >  >  
> > > mit [mm]V_{Spat}[/mm] = ( [mm]\vec{u}[/mm] x [mm]\vec{v}[/mm] ) * [mm]\vec{c}[/mm]
> > >
> > > und [mm]A_{Grundflaeche}[/mm] = | [mm]\vec{u}[/mm] x [mm]\vec{v}[/mm] |
>  >  >  
> > > wobei mir noch nicht klar ist, wie ich hier [mm]\vec{c}[/mm]
>  >  > bestimmen kann?

>  >  
> > Vergleiche die beiden Formeln. Dann siehst Du, wie c zu
> > bestimmen ist. Nimm von jeder Geraden einen beliebigen
> > Punkt und bilde den Differenzvektor.
>  
> Welche beiden Formeln soll ich vergleichen?
>
> Kommt da nicht immer etwas anderes heraus ???
>  
> [mm]\vec{c}[/mm] = [mm]\vec{q} -\vec{p}[/mm]   ???

Hallo,

Du hast nun ein Spat, welches aufgespannt wird von den beiden Richtungsvektoren der Geraden und dem Differenzvektor [mm] \vec{c}. [/mm]
Egal, welche Punkte P und Q Du für [mm] \vec{c} [/mm] verwendest, das Volumen des Spats wird immer gleich sein: Grundfläche* Höhe.
Die Höhe ist der Abstand zwischen Grund- und Deckfläche, und der ist immer gleich, denn die beiden Flächen liegen ja immer in derselbenen parallelen  Ebenen, die eine in

[mm] E_1: [/mm]   $ [mm] \vec{x} [/mm] $ = $ [mm] r\cdot{}\vektor{1 \\ 4 \\ -3} [/mm] $+ $ [mm] s\cdot{}\vektor{1 \\ 0 \\ -2} [/mm] $,

die andere in

[mm] E_2: [/mm] $ [mm] \vec{x} [/mm] $ = [mm] \vektor{1\\1\\0}+$ r\cdot{}\vektor{1 \\ 4 \\ -3} [/mm] $+ $ [mm] s\cdot{}\vektor{1 \\ 0 \\ -2} [/mm] $.


Die Lotfußpunkte hast Du richtig ausgerechnet.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de