www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Abstandberechnung
Abstandberechnung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abstandberechnung: Hessesche Normalform - Abstand
Status: (Frage) beantwortet Status 
Datum: 14:51 Fr 21.04.2006
Autor: Ingy

Aufgabe
Berechnen Sie den Abstand zwischen Punkt P und der Geraden g
P(13/-1)
g=  [mm] \vektor{5 \\ 7} [/mm] +  [mm] \lambda \vektor{3 \\ -1} [/mm]

Hallo! Also meine Frage ist, wie ich bei der Aufgabe anfangen muss.. ich habe bis jetzt den Abstand nur zwischen 2 Geraden berechnet und weiß jetzt nich genau wie das mit dem Punkt gehen soll... Habe das immr mit Hessescher Normalform gemacht...
Ich hoffe mir kann jemand einen Tipp geben...
Vielen Dank schon mal..
Schöne Grüße
Ingy
(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Abstandberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Fr 21.04.2006
Autor: Sigrid

Hallo Ingy,

Herzlich [willkommenmr]

> Berechnen Sie den Abstand zwischen Punkt P und der Geraden
> g
>  P(13/-1)
> g=  [mm]\vektor{5 \\ 7}[/mm] +  [mm]\lambda \vektor{3 \\ -1}[/mm]
>  Hallo!
> Also meine Frage ist, wie ich bei der Aufgabe anfangen
> muss.. ich habe bis jetzt den Abstand nur zwischen 2
> Geraden berechnet und weiß jetzt nich genau wie das mit dem
> Punkt gehen soll... Habe das immr mit Hessescher Normalform
> gemacht...

Da deiner Aufgabe der zwei-dimensionale Raum zu Grunde liegt, kannst du auch hier mit der Hesse-Normalenform rechnen.
eine Gleichung deiner Gerade in Koordinateform ist ja:

[mm] x + 3 y = 26 [/mm]   Klar, wie du daran kommst?

Ich denke, jetzt kommst du weiter, sonst melde dich.

Gruß
Sigrid


Bezug
                
Bezug
Abstandberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Fr 21.04.2006
Autor: Ingy

Also ehrlich gesagt ist mir die Zeile nicht so ganz klar...
ich denke jetzt muss man doch da irgendwie auch so Vektoren mit bilden oder?
Mathe ist nicht so meine Stärke..
Schöne Grüße

Bezug
                        
Bezug
Abstandberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Fr 21.04.2006
Autor: Sigrid

hallo Ingy,

Die Parameterform der Geradengleichung ist:

g=  $ [mm] \vektor{5 \\ 7} [/mm] $ +  $ [mm] \lambda \vektor{3 \\ -1} [/mm] $

Für einen Normalenvektor $ [mm] \vektor{n_1 \\ n_2} [/mm] $ zu  [mm] $\vektor{3 \\ -1} [/mm] $

gilt:

$ 3 [mm] \cdot n_1 [/mm] - [mm] n_2 [/mm] = 0 $

Eine Lösung dieser Gleichung ist $ [mm] n_1 [/mm] = [mm] 1\\ \wedge\\ n_2 [/mm] = 3 $

(Wählst du eine andere Lösung, so änderst du nur Länge und/oder Orientierung des Normalenvektors)

Da du ja auch einen Punkt von g, nämlich (5|7) kennst, kannst du die Koordinatengleichung aufstellen.

Gruß
Sigrid

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de