Abstandsfunktionen für Mengen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 13:08 So 15.11.2009 | Autor: | Rimtech |
Aufgabe | Sei A [mm] \subset \IR^{n}. [/mm] Für x [mm] \in \IR^{n} [/mm] definieren wir den Abstand von x zu A als d(x,y) := inf{d(x,a) | a [mm] \in [/mm] A}, wobei d die euklidische Metrik des [mm] \IR^{n} [/mm] ist.
Zu zeigen:
i) [mm] \forall [/mm] x,y [mm] \in \IR^{n} [/mm] gilt: |d(x) - d(y)| [mm] \le [/mm] d(x,y)
ii) Die Funktion d: [mm] \IR^{n} \to \IR [/mm] ist stetig.
iii) x [mm] \in \IR [/mm] liegt genau dann in A (abgeschlossen), wenn d(x) = 0 ist. |
Hallo, ich sitze gerade an dieser Aufgabe und komme nicht weiter.
i) |d(x) - d(y)| = |inf{d(x,a) | a [mm] \in [/mm] A} - inf{d(y,a) | a [mm] \in [/mm] A}| [mm] \le [/mm] inf{|d(x,a) - d(y,a)|| a [mm] \in [/mm] A} [mm] \le [/mm] inf{d(x,y) | a [mm] \in [/mm] A} = d(x,y)
Kann ich das so machen, welche Begründung bringe ich bei den Ungleichungen?
ii) Eine Funktion ist genau dann stetig, wenn für das Urbild einer offene Menge U [mm] \subset \IR [/mm] gilt [mm] d^{-1}(U) [/mm] ist offen in [mm] \IR^{n}
[/mm]
Wie wende ich diese Definition auf die Aufgabe an?
iii)
"=>"
Sei x [mm] \in \A [/mm] (abgeschlossen), so ist d(x) = inf{d(x,a) | a [mm] \in [/mm] A} = d(x,x) = 0 falls x [mm] \in [/mm] A (innerer Kern) liegt. Falls x [mm] \in \deltaA [/mm] (Rand von A) liegt so existiert ein [mm] \varepsilon, [/mm] sodass die offene Umgebungskugel B(x) mit Radius [mm] \varepsilon [/mm] mindestens einen Punkt y [mm] \in [/mm] A erhält, deren Abstand d(x,y) beliebig klein wird.
"<="
Sei d(x) = 0 => inf{d(x,a) | x [mm] \in [/mm] A} = 0 => d(x,x) = 0
Der Äquivalenzbeweis ist für mich unbefriedigend und ich weiß nichtmal ob er annähernd richtig ist.
Ich wäre für Hilfe sehr dankbar.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:53 Mo 16.11.2009 | Autor: | felixf |
Hallo!
> Sei A [mm]\subset \IR^{n}.[/mm] Für x [mm]\in \IR^{n}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
definieren wir
> den Abstand von x zu A als d(x,y) := inf{d(x,a) | a [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
A},
Die Funktion soll $d(x)$ heissen und nicht $d(x,y)$, nicht?
> wobei d die euklidische Metrik des [mm]\IR^{n}[/mm] ist.
> Zu zeigen:
> i) [mm]\forall[/mm] x,y [mm]\in \IR^{n}[/mm] gilt: |d(x) - d(y)| [mm]\le[/mm] d(x,y)
> ii) Die Funktion d: [mm]\IR^{n} \to \IR[/mm] ist stetig.
> iii) x [mm]\in \IR[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
liegt genau dann in A (abgeschlossen), wenn
> d(x) = 0 ist.
>
> Hallo, ich sitze gerade an dieser Aufgabe und komme nicht
> weiter.
>
> i) |d(x) - d(y)| = |inf{d(x,a) | a [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
A} - inf{d(y,a) | a
> [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
A}| [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
inf{|d(x,a) - d(y,a)|| a [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
A} [mm]\le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
inf{d(x,y)
> | a [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
A} = d(x,y)
>
> Kann ich das so machen, welche Begründung bringe ich bei
> den Ungleichungen?
Wenn du nicht weisst, warum die Ungleichungen gelten, sie also nicht begruenden kannst, dann kannst du das so nicht machen.
> ii) Eine Funktion ist genau dann stetig, wenn für das
> Urbild einer offene Menge U [mm]\subset \IR[/mm] gilt [mm]d^{-1}(U)[/mm] ist
> offen in [mm]\IR^{n}[/mm]
>
> Wie wende ich diese Definition auf die Aufgabe an?
Am besten gar nicht. Mit der [mm] $\varepsilon$-$\delta$-Variante [/mm] der Stetigkeit in Kombination mit (i) kommst du schnell zum Ziel.
> iii)
> "=>"
> Sei x [mm]\in \A[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
(abgeschlossen), so ist d(x) = inf{d(x,a) | a
> [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
A} = d(x,x) = 0 falls x [mm]\in[/mm] A (innerer Kern) liegt.
Ok.
> Falls x [mm]\in \deltaA[/mm] (Rand von A) liegt so existiert ein
> [mm]\varepsilon,[/mm] sodass die offene Umgebungskugel B(x) mit
> Radius [mm]\varepsilon[/mm] mindestens einen Punkt y [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
A erhält,
> deren Abstand d(x,y) beliebig klein wird.
Du meinst also, fuer alle $\varepsilon > 0$ liegt in der Kugel mind. ein Punkt von $A$.
Und jetzt? Fertig bist du noch nicht.
Mach es doch etwas anders.
Wegen $a \in \overline{A}$ gibt es eine Folge $(a_i)_i$ von Elementen aus $A$ mit $a_n \to x$ (warum?). Fuer jedes $a_i$ gilt $d(a_i) = 0$. Benutze jetzt (ii).
> "<="
> Sei d(x) = 0 => inf{d(x,a) | x [mm]\in[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
A} = 0 => d(x,x) = 0
Dass $d(x) = 0$ ist bedeutet doch, dass es zu jedem $\varepsilon > 0$ ein $x' \in A$ gibt mit $d(x, x') < \varepsilon$ (warum?). Konstruiere damit eine Folge von Elementen aus $A$, die gegen $x$ konvergiert. Daraus folgt dann $x \in \overline{A}$.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Di 17.11.2009 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|