www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Addition von Brüchen
Addition von Brüchen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Addition von Brüchen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:25 So 05.02.2012
Autor: autumncolors

Wie addiere ich diese zwei Brüche miteinander?

[mm] -\bruch{2p}{2p^2} [/mm] plus [mm] \bruch{p}{2p^2} [/mm]

Habe den Ansatz - [mm] \bruch{2p*p}{-2p^2} [/mm] plus [mm] \bruch{-2p^2*2}{-2p^2} [/mm]

aber wie mache ich korrekt weiter? ich verstehe das alles nicht, wenn man p*p muss und dann noch negative Zahlen.. aaargh

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Addition von Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:34 So 05.02.2012
Autor: angela.h.b.


> Wie addiere ich diese zwei Brüche miteinander?

Hallo,

[willkommenmr].

Wiederhole unbedingt die Bruchrechnung!

Addition von Brüchen am Beispiel:

[mm] \bruch{5}{7}+\bruch{4}{7}=\bruch{5+4}{7}=\bruch{9}{7} [/mm]

[mm] \bruch{5}{7}+\bruch{4}{3}=\bruch{5*3}{7*3}+\bruch{4*7}{3*7}=\bruch{15+28}{21}=\bruch{43}{21}. [/mm]

>  
> [mm]-\bruch{2p}{2p^2}[/mm] +[mm]\bruch{p}{2p^2}[/mm]

[mm] =\bruch{-2p+p}{2p^2}=\bruch{-2p+1p}{2p^2}=... [/mm]

>  
> Habe den Ansatz - [mm]\bruch{2p*p}{-2p^2}[/mm] plus
> [mm]\bruch{-2p^2*2}{-2p^2}[/mm]

Ogottogott!

LG Angela

>  
> aber wie mache ich korrekt weiter? ich verstehe das alles
> nicht, wenn man p*p muss und dann noch negative Zahlen..
> aaargh
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Addition von Brüchen: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 18:47 So 05.02.2012
Autor: leduart

Hallo angela
du hast dich vertippt:
>$ [mm] -\bruch{2p}{2p^2} [/mm] $ +$ [mm] \bruch{p}{2p^2} [/mm] $

>$ [mm] =\bruch{-2p+p}{2^p}=\bruch{-2p+1p}{2^p}=... [/mm] $

>  

richtig ist
$ [mm] -\bruch{2p}{2p^2} [/mm] $ +$ [mm] \bruch{p}{2p^2} [/mm] $

$ [mm] =\bruch{-2p+p}{2*p^2}=\bruch{-2p+1p}{2*p^2}=... [/mm] $

>  


Bezug
                
Bezug
Addition von Brüchen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 So 05.02.2012
Autor: autumncolors

Sind [mm] -2p^2 [/mm] mal [mm] 2p^2 [/mm] gleich was? 1p? und dann 1p plus 1p sind gleich [mm] 2p^2..? [/mm]

Bezug
                        
Bezug
Addition von Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:23 So 05.02.2012
Autor: Kimmel

Du scheinst auch Probleme zu haben mit Variablen zu rechnen:

[mm] 1p + 1p = 2p [/mm]

Zu der Aufgabe:

Du hast in der Aufgabe zwei Brüche stehen, die miteinander addiert werden soll.
Glücklicherweise sind die beiden Nenner bereits gleich.
Was kannst du also machen, um die miteinader addieren, wenn du das weißt?

Schaue dir dazu angela's Beispiel mal an.

Bezug
                        
Bezug
Addition von Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:12 So 05.02.2012
Autor: leduart

Hallo
es ging doch ums Assieren? warum willst du jetst multipliziern?
wenn du multiplizieren willst (aber nicht bei der gefragten addition. [mm] 2p^2=2*p*p [/mm]
[mm] .10^2*2p^2=-2*p*p*2*p*p [/mm] was gibt fas?
bitte geh auf die posts ein und stel nicht einfach ne neue frage die mit dem addiern nichts zu tun hat.
gruss leduart

Bezug
                        
Bezug
Addition von Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:45 Mo 06.02.2012
Autor: fred97


> Sind [mm]-2p^2[/mm] mal [mm]2p^2[/mm] gleich was? 1p?


Nein. [mm] $(-2p^2)*(2p^2) [/mm] = [mm] (-2)*2*p^2*p^2=-4p^4$ [/mm]


> und dann 1p plus 1p
> sind gleich [mm]2p^2..?[/mm]  

Nein: 1 Öltanker+1 Öltanker = 2 Öltanker.

FRED


Bezug
        
Bezug
Addition von Brüchen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 So 05.02.2012
Autor: leduart

Hallo
Wenn man kann sollte man Brüche kürzen wie
$ [mm] \bruch{p}{2p^2}= \bruch{1}{2p} [/mm] $
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de