www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Additionstheorem
Additionstheorem < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Additionstheorem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Fr 19.01.2007
Autor: Monsterzicke

Aufgabe
Aufgabe 45 Beweise das Additionstheorem für den Tangens:
tan(x + y) =
(tan x + tan y)/
(1 − tan x tan y)
für x, y  [mm] \in [/mm] R mit x, y, x + y [mm] \not\in \pi/2+ \pi\IZ [/mm]

Hat jemand eine Idee wie ich da rangehen soll?
Ich weiß ja, dass
[mm] sin(\alpha+\beta)=sin\alpha cos\beta+ cos\beta [/mm] sin
[mm] \alpha [/mm]
[mm] cos(\alpha+\beta)=cos\alpha cos\beta- sin\alpha sin\beta [/mm]
[mm] tan\alpha=sin\alpha/cos\alpha [/mm]
für  [mm] tan(\alpha+\beta) [/mm] müssen wir ja lediglich für sin und cos die addtionstheoreme von sin und cos einsetzen. also:

[mm] tan(\alpha+\beta)=(sin\alpha cos\beta+ cos\alpha sin\beta)/(cos\beta cos\alpha- sin\alpha sin\beta) [/mm]





        
Bezug
Additionstheorem: ausklammern
Status: (Antwort) fertig Status 
Datum: 20:06 Fr 19.01.2007
Autor: Loddar

Hallo Monsterzicke!


Du bist ja bereits auf einem guten Weg. Nun musst Du hier jeweils [mm] $\cos\alpha*\cos\beta$ [/mm] ausklammern:

[mm]\tan(\alpha+\beta)= \bruch{\sin(\alpha+\beta)}{\cos(\alpha+\beta)}=\bruch{\sin\alpha*\cos\beta+\cos\alpha *\sin\beta}{\cos\beta*\cos\alpha-\sin\alpha*\sin\beta} \ = \ \bruch{\cos\alpha*\cos\beta*\left(\bruch{\sin\alpha*\cos\beta}{\cos\alpha*\cos\beta}+\bruch{\cos\alpha *\sin\beta}{\cos\alpha*\cos\beta}\right)}{\cos\alpha*\cos\beta*\left(\bruch{\cos\alpha*\cos\beta}{\cos\alpha*\cos\beta}-\bruch{\sin\alpha *\sin\beta}{\cos\alpha*\cos\beta}\right)} \ = \ ...[/mm]

Nun kürzen und jeweils die Definition [mm] $\bruch{\sin\gamma}{\cos\gamma} [/mm] \ = \ [mm] \tan\gamma$ [/mm] anwenden.


Gruß
Loddar


Bezug
                
Bezug
Additionstheorem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:44 Sa 20.01.2007
Autor: Monsterzicke

Hi! Danke für deine Bemühungen.
Ich habe das mal gekürz und habe jetzt da stehen:
[mm] (sin\alpha/cos\alpha [/mm] + [mm] sin\beta/cos\beta) [/mm] / [mm] -(sin\alpha*sin\beta [/mm] / [mm] cos\alpha*cos\beta) [/mm]
mit Kehrwert multiplizieren:
--> [mm] (sin\alpha/cos\alpha [/mm] + [mm] sin\beta/ cos\beta) [/mm] * [mm] -(cos\alpha *cos\beta/sin\alpha *sin\beta) [/mm]

Ähm, und was ist jetzt genau diese Definition mit [mm] \gamma, [/mm] die du meinst?

Bezug
                        
Bezug
Additionstheorem: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Sa 20.01.2007
Autor: ullim

Hi,

> Hi! Danke für deine Bemühungen.
>  Ich habe das mal gekürz und habe jetzt da stehen:
>  [mm](sin\alpha/cos\alpha[/mm] + [mm]sin\beta/cos\beta)[/mm] /
> [mm]-(sin\alpha*sin\beta[/mm] / [mm]cos\alpha*cos\beta)[/mm]

Da müsste aber stehen

[mm] \br{sin(\alpha)/cos(\alpha) + sin(\beta)/cos(\beta)}{1-sin(\alpha)sin(\beta) / cos(\alpha)cos(\beta)} [/mm]

Die 1 hast Du vergessen.

Danach dann das anwenden was Loddar geschrieben hat, [mm] \br{sin(\alpha)}{cos(\alpha)}=tan(\alpha). [/mm] Dann folgt:

[mm] \br{tan(\alpha)+tan(\beta)}{1-tan(\alpha)tan(\beta)} [/mm]

und das wars dann auch schon.

mfg ullim

Bezug
                                
Bezug
Additionstheorem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:42 Sa 20.01.2007
Autor: Monsterzicke

Hey! Dankem, danke, danke! Ich habs kapiert. Ein wirklich doofer Fehler von mir, muss ich zugeben...
Ein schönes WE!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de