www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - Additionstheoreme sin/cos
Additionstheoreme sin/cos < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Additionstheoreme sin/cos: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 So 17.03.2013
Autor: AndrThadk

Aufgabe
Berechne N und S:

[mm] \summe F_{ix} [/mm] = 0: [mm] S\cos \beta [/mm] - [mm] N\sin \alpha [/mm] = 0

[mm] \summe F_{iy} [/mm] = 0: [mm] S\sin \beta [/mm] + [mm] N\cos \alpha [/mm] - G = 0

Dies sind zwei Gleichungen für die beiden Unbekannten N und S. Durch Eliminieren von N bzw. S folgen unter Anwendung der Additionstheoreme folgende Ergebnisse:

S = [mm] G\*\bruch{\sin \alpha}{\sin(\bruch{\pi}{2} + \beta - \alpha)} [/mm] = [mm] G\*\bruch{\sin \alpha}{\cos(\alpha - \beta)} [/mm]

N = [mm] G\*\bruch{\sin(\bruch{\pi}{2} - \beta}{\sin(\bruch{\pi}{2} + \beta - \alpha)} [/mm] = [mm] G\*\bruch{\cos \beta}{\cos(\alpha - \beta)} [/mm]

So. Nun krieg ich aber N oder S nicht vernünftig eliminiert.

Aus Gleichung 1 erhalte ich:

[mm] S\cos \beta [/mm] = [mm] N\sin \alpha \to [/mm] S = [mm] \bruch{N\sin \alpha}{\cos \beta} [/mm] und N = [mm] \bruch{S\cos \beta}{\sin \alpha} [/mm]

Aber jetzt komm ich gar nicht mehr weiter. N oder S in Gleichung 2 einsetzen oder quadrieren der Gleichungen und dann Addieren bringt mich alles nicht weiter. Ich krieg das gar nicht in eine Form, wo ich Additionstheoreme anwendne könnte.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Additionstheoreme sin/cos: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 So 17.03.2013
Autor: Sax

Hi,

> Berechne N und S:
>  
> [mm]\summe F_{ix}[/mm] = 0: [mm]S\cos \beta[/mm] - [mm]N\sin \alpha[/mm] = 0
>  
> [mm]\summe F_{iy}[/mm] = 0: [mm]S\sin \beta[/mm] + [mm]N\cos \alpha[/mm] - G = 0
>  
> Dies sind zwei Gleichungen für die beiden Unbekannten N
> und S. Durch Eliminieren von N bzw. S folgen unter
> Anwendung der Additionstheoreme folgende Ergebnisse:
>  
> S = [mm]G\*\bruch{\sin \alpha}{\sin(\bruch{\pi}{2} + \beta - \alpha)}[/mm]
> = [mm]G\*\bruch{\sin \alpha}{\cos(\alpha - \beta)}[/mm]
>  
> N = [mm]G\*\bruch{\sin(\bruch{\pi}{2} - \beta}{\sin(\bruch{\pi}{2} + \beta - \alpha)}[/mm]
> = [mm]G\*\bruch{\cos \beta}{\cos(\alpha - \beta)}[/mm]
>  So. Nun
> krieg ich aber N oder S nicht vernünftig eliminiert.
>  
> Aus Gleichung 1 erhalte ich:
>  
> [mm]S\cos \beta[/mm] = [mm]N\sin \alpha \to[/mm] S = [mm]\bruch{N\sin \alpha}{\cos \beta}[/mm]
> und N = [mm]\bruch{S\cos \beta}{\sin \alpha}[/mm]

Richtig !


>  
> Aber jetzt komm ich gar nicht mehr weiter. N oder S in
> Gleichung 2 einsetzen

Ganz genau! Und zwar erst N einsetzen, mit sin [mm] \alpha [/mm] multiplizieren, S ausklammern, Additionstheorem für cos anwenden, nach S auflösen. Dann das Ganze noch mal für N.

Gruß Sax.

Bezug
                
Bezug
Additionstheoreme sin/cos: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:59 So 17.03.2013
Autor: AndrThadk

Perfekt, mit dem Hinweis hats geklappt. Ich habs nach dem Einsetzen vorher zu kompliziert gemacht. Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de