www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Aussagenlogik" - Aequivalenzrelation
Aequivalenzrelation < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aequivalenzrelation: Relationen
Status: (Frage) beantwortet Status 
Datum: 23:13 Sa 03.11.2012
Autor: Melisa

Aufgabe
Hallo an alle,
wie immer, sitze ich samstags am PC und mache meine Aufgaben und wie immer habe ich Probleme :(
Meine Aufgabe lautet:
Gegeben sei eine Menge S von Bewohnerinnen und Bewohnern des Saarlandes, wobei
wir der Einfachheit halber annehmen, dass keine zwei Personen in S exakt gleiche
Körpergröße haben. Wir definieren für x,y [mm] \in [/mm] S folgende Relationen:
• x R1 y: x ist mindestens gleich groß wie y
• x R2 y: x ist mindestens gleich groß oder mindestens gleich schwer wie y
• x R3 y: x hat dieselbe Mutter wie y
• x R4 y: x hat denselben Onkel wie y
Stellen Sie für jede der Relationen fest, ob es sich um eine Äquivalenzrelation handelt.

Meine Idee:
R1 ist Äquivalenzrelation,weil
a) x  ist mindestens gleich groß wie x und y ist mindestens gleich groß wie y => Reflexivitaet
b) x R1 y => y R1 x=> Symmetrie
c) wenn x R1 y und Y R1 z => x R1 z  also R1 ist Äquivalenzrelation

R2 weiss ich net, und vieleicht kann mir jemand erklaeren
R3 ist Äquivalenzrelation
und auch R4 weiss ich net :(
Leutee helft mir bitte :)

        
Bezug
Aequivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 So 04.11.2012
Autor: tobit09

Hallo Melisa,


>  Meine Idee:
>  R1 ist Äquivalenzrelation,weil
> a) x  ist mindestens gleich groß wie x und y ist
> mindestens gleich groß wie y => Reflexivitaet

Bei der Reflexivität geht es um die Frage, ob jeder Saarländer mit sich selbst in Relation steht.

Sei also [mm] $x\in [/mm] S$ ein Saarländer. Gilt dann stets $x [mm] R_1 [/mm] x$, d.h. ist x mindestens so groß wie x?


>  b) x R1 y => y R1 x=> Symmetrie

Wählen wir mal zwei verschiedene Saarländer aus (das Saarland mag zwar klein sein, aber mindestens zwei Bewohner dürfte es haben ;-) ).
Nach der Annahme aus der Aufgabenstellung sind die beiden nicht gleich groß. Nennen wir den größeren von beiden mal x und den kleineren von beiden y.

Dann gilt x R1 y (denn x ist mindestens so groß wie y), aber nicht y R1 x (denn y ist nicht mindestens so groß wie x).

Also ist R1 nicht symmetrisch.

>  c) wenn x R1 y und Y R1 z => x R1 z

Begründung: Wenn x mindestens so groß wie y und y mindestens so groß wie z ist, ist x mindestens so groß wie z.


> R2 weiss ich net, und vieleicht kann mir jemand erklaeren

Reflexivität hieße: Für alle [mm] $x\in [/mm] S$ gilt x R2 x, d.h. jeder Saarländer ist mindestens so groß oder mindestens so schwer wie er selbst.

Symmetrie hieße: Für alle [mm] $x,y\in [/mm] S$ mit x R2 y gilt y R2 x, d.h. wannimmer man zwei Saarländer hernimmt, so dass der eine mindestens so groß oder mindestens so schwer wie der andere ist, ist der andere mindestens so groß oder mindestens so schwer wie der eine.

>  R3 ist Äquivalenzrelation

[ok]

>  und auch R4 weiss ich net :(

Ich finde die Definition von R4 nicht ganz eindeutig. Ich interpretiere sie so, dass x R4 y bedeutet, dass x und y mindestens einen Onkel gemeinsam haben.

Reflexivität hieße: Für alle [mm] $x\in [/mm] S$ gilt $x R4 x$, d.h. jeder Saarländer hat mit sich selbst mindestens einen Onkel gemeinsam. Ist das der Fall?


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de