www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Affine Abbildung
Affine Abbildung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Affine Abbildung: Abiaufgabe
Status: (Frage) beantwortet Status 
Datum: 17:49 So 02.01.2005
Autor: balliballi

[Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt]

Der Aufgabentext:
Die aff. Abb. [mm] \alpha [/mm] bilde das Dreieck ABC mit A(-3/2) B(1/1) C(-4/2) auf das Dreieck A'B'C' ab mit A'=B, B'=A und C'=C

a) stelle die Abbildungsgleichung von [mm] \alpha [/mm] in Matrixdarstellung auf.
c) Zeige, dass die Gerade durch A und B Fixgerade der Abbildung ist.
d) Bestimme das Urbild des Punktes P'(55/-10) unter der Abbildung [mm] \alpha. [/mm]

e) Führe erst die Abb. [mm] \beta: \vec{x} [/mm] =  [mm] \pmat{ 62,04 & -128,31 \\ -12,69 & 26,79 } [/mm] aus und dann die Abb. [mm] \alpha. [/mm] Diese zusammengesetzte Abb. heisst [mm] \gamma. [/mm] Welche Art von Abb. ist [mm] \gamma? [/mm]


Unser Lösungsansatz bestand daraus, dass wir mit einer Matrix A mehrere Gleichungen aufgestellt hatten, die jedoch zu keinem vernünftigen Ergebnis fürten. Hier der Rechenweg für Punkt A (Das selbe haben wir auch für Punkt B und C ausprobiert.)
  [mm] \pmat{ a & b \\ c & d } [/mm] *  [mm] \vektor{-3 \\ 2} [/mm] =  [mm] \vektor{1 \\ 1} [/mm]

So haben wir insgesamt 6 Gleichungen rausbekommen. Hier sind sie:

1. -3a+2b = 1
2. -3c+2d = 1
3. a+b = -3
4. c+d = 2
5. -4a+2b = -4
6. -4c+2d = 2

Dann haben wir versucht sie zu lösen, uns dabei aber im Kreis bewegt. Vieleicht haben wir das falsche Vertfahren benutzt, jedenfalls kommen wir hiermit nicht zu einem Ergebnis.


Wir hoffen auf schnelle Antwort und bedanken uns schon mal im Voraus.
Gruss Sascha und Ruijia

        
Bezug
Affine Abbildung: Lösungsskizze
Status: (Antwort) fertig Status 
Datum: 18:43 So 02.01.2005
Autor: moudi


> [Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt]
>  
> Der Aufgabentext:
>  Die aff. Abb. [mm]\alpha[/mm] bilde das Dreieck ABC mit A(-3/2)
> B(1/1) C(-4/2) auf das Dreieck A'B'C' ab mit A'=B, B'=A und
> C'=C
>  
> a) stelle die Abbildungsgleichung von [mm]\alpha[/mm] in
> Matrixdarstellung auf.
>  c) Zeige, dass die Gerade durch A und B Fixgerade der
> Abbildung ist.
> d) Bestimme das Urbild des Punktes P'(55/-10) unter der
> Abbildung [mm]\alpha. [/mm]
>  
> e) Führe erst die Abb. [mm]\beta: \vec{x}[/mm] =  [mm]\pmat{ 62,04 & -128,31 \\ -12,69 & 26,79 }[/mm]
> aus und dann die Abb. [mm]\alpha.[/mm] Diese zusammengesetzte Abb.
> heisst [mm]\gamma.[/mm] Welche Art von Abb. ist [mm]\gamma? [/mm]
>  
>
> Unser Lösungsansatz bestand daraus, dass wir mit einer
> Matrix A mehrere Gleichungen aufgestellt hatten, die jedoch
> zu keinem vernünftigen Ergebnis fürten. Hier der Rechenweg
> für Punkt A (Das selbe haben wir auch für Punkt B und C
> ausprobiert.)

Eine affine Abbildung besteht nicht nur aus einer Matrix, sondern aus einem Punkt (Vektor) und einer Matrix!

Sei (p,q) ein Punkt der Ebene und   [mm]\pmat{ a & b \\ c & d}[/mm], dann ist eine affine Abbilddung F gegeben durch
[mm]F(x,y)=\vektor{p \\ q}+\pmat{ a & b \\ c & d}\vektor{x \\ y}[/mm]

Jetzt habt ihr 6 Unbekannte und 6 Gleichungen und könnt so dass System algebraisch lösen. Man kann sich vielleicht überlegen, ob man durch eine geometrische Ueberlegung nicht schneller ans Ziel kommt.

mfG Moudi

>    [mm]\pmat{ a & b \\ c & d }[/mm] *  [mm]\vektor{-3 \\ 2}[/mm] =  [mm]\vektor{1 \\ 1}[/mm]
>
>
> So haben wir insgesamt 6 Gleichungen rausbekommen. Hier
> sind sie:
>  
> 1. -3a+2b = 1
>  2. -3c+2d = 1
>  3. a+b = -3
>  4. c+d = 2
>  5. -4a+2b = -4
>  6. -4c+2d = 2
>  
> Dann haben wir versucht sie zu lösen, uns dabei aber im
> Kreis bewegt. Vieleicht haben wir das falsche Vertfahren

> benutzt, jedenfalls kommen wir hiermit nicht zu einem
> Ergebnis.
>  
>
> Wir hoffen auf schnelle Antwort und bedanken uns schon mal
> im Voraus.
>  Gruss Sascha und Ruijia
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de