www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Interpolation und Approximation" - Aitken's \Delta^2 Algorithmus
Aitken's \Delta^2 Algorithmus < Interpol.+Approx. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Aitken's \Delta^2 Algorithmus: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 00:06 Mi 17.06.2009
Autor: oby

Aufgabe
Aitken's [mm] \Delta^2 [/mm] Algorithmus:
Wir müssen hier allgemein
[mm] x_k [/mm] - [mm] x_{\star} [/mm] = C [mm] (x_{k-1} [/mm] - [mm] x_{\star} [/mm] )
mit Grenzwert [mm] x_{\star} [/mm] und C [mm] \in \IR^{2x2} [/mm] annehmen.

a) Definieren sie [mm] u_k=\Delta x_k [/mm] ; [mm] v_k =\Delta^2 x_k [/mm] sowie [mm] U_k=[u_0,u_1,...,u_{k-1}] [/mm] und [mm] V_k=[v_0,v_1,...,v_{k-1}] [/mm] ;
Nehmen Sie an, [mm] V_k [/mm] sei invertierbar und zeigen Sie damit:
[mm] x_{\star} [/mm] = [mm] x_0 [/mm] - [mm] U_nV_n^{-1}u_0 [/mm]  (= [mm] x_0 [/mm] - [mm] \Delta X(\Delta^2X)^{-1}\Delta x_0 [/mm] )
Hinweis: Zeigen Sie zunächst [mm] (I-C)(x_{\star}-x_0) =u_0 [/mm] und drücken Sie dann [mm] (I-C)^{-1} [/mm] durch [mm] U_n [/mm] und [mm] V_n [/mm] aus.


b)Die beschleunigte Folge [mm] (\overline{x_k})_{k\in \IN} [/mm] berechnet man dann nach der Vorschrift (1) :
[mm] V_n [/mm] y = [mm] -u_0; [/mm]
[mm] \overline{x_n} [/mm] = [mm] x_0 [/mm] - [mm] U_n [/mm] y ;

Die Berechnung von [mm] U_n [/mm] und [mm] V_n [/mm] benötigt n Auswertungen des Iterationsschrittes und ist damit in der Praxis nicht praktikabel. Außerdem sind die Differenzen bei Konvergenz sehr stark mit Auslöschung
behaftet. Man verwendet daher oft in (1) nur k < n Zwischenvektoren [mm] u_i, v_i [/mm] und betrachtet das Ergebnis als eine ausreichende Näherung für die nächste Iterierte.Welches Problem tritt dabei auf und in welchem
Sinne kann (1) gelöst werden?

Hallo Matheraum.
Ich habe bereits den Hinweis befolgt und hab auch rausbekommen, dass
[mm] (I-C)(x_{\star}-x_0) =u_0 [/mm] gilt.
Aber nun soll man wohl C irgendwie durch U und V ausdrücken, was mir nicht gelungen ist. Hab erstmal probiert mit obiger Gleichung was umzuformen, da komme ich auf folgendes:
[mm] (I-C)^{-1} [/mm] = [mm] u_0^{-1}x_{\star}-u_0^{-1}x_0 [/mm] ,
Aber jetzt weiß ich da schonmal nicht woher auf einmal die ganzen anderen [mm] u_k [/mm] s kommen sollen. Deshalb hab ichs nochmal mit der Formel aus der ersten Zeile der Aufgabe probiert,hab die umgestellt,weiß dann aber auch nicht weiter.
Um mir das ganze klar zu machen, wollte ich mir ein einfaches Beispiel konstruieren. Wollte einfach mal das C ausrechnen wenn ich so ne Folge wie [mm] x_k [/mm] = [mm] 1/k*x_0 [/mm] habe. [mm] x_{\star} [/mm] wäre dann auf jeden Fall 0. Nur bekomme ich da ja leider keine feste Matrix raus, sondern eine Art Matrixfolge [mm] C_k [/mm] , also in Abhängigkeit von k .. Das kann ja irgendwie nicht sein und wollt deshalb mal hier fragen ob mir da jemand weiterhelfen kann und/oder mir sagen kann was für Fehler ich gemacht habe..
MfG, Oby

Edit: Hab eben noch den zweiten Teil der Aufgabe reingestellt, vielleicht hilft das ja auch irgendwas...?!?!

        
Bezug
Aitken's \Delta^2 Algorithmus: Weiter
Status: (Frage) überfällig Status 
Datum: 12:23 Mi 17.06.2009
Autor: oby

Hallo, hab inzwischen immerhin rausgefunden, dass nicht nur
[mm] (I-C)(x_{\star}-x_0) [/mm] = [mm] u_0 [/mm] gilt, sondern sogar:
[mm] (I-C)(x_{\star}-x_k) [/mm] = [mm] u_k \forall [/mm] k [mm] \in \IN [/mm]
Ich hoffe, mir kann jemand weiterhelfen, wie ich [mm] (I-C)^{-1} [/mm] mit U und V ausdrücken kann..
LG OBy

Bezug
                
Bezug
Aitken's \Delta^2 Algorithmus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 19.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Aitken's \Delta^2 Algorithmus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:20 Fr 19.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Interpolation und Approximation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de