www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Akkretiver Operator, Existenz
Akkretiver Operator, Existenz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Akkretiver Operator, Existenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:57 Do 19.01.2012
Autor: hejaa

Aufgabe
Sei (H(·, ·)) ein Hilbertraum und A [mm] \in [/mm] L(H) ein akkretiver Operator, d.h. -A sei dissipativ. Zeige, daß der Operator [mm] R_{\lambda} [/mm] := (I + [mm] \lambda A)^{-1} [/mm] (wobei I : H [mm] \to [/mm]  H die identische Abbildung ist) für  jedes [mm] \lambda \ge [/mm]  0 als linearer und beschränkter Operator in H existiert und nichtexpansiv ist, d.h. für alle u, v [mm] \in [/mm] H gilt:

[mm] \parallel R_\lambda [/mm] u − [mm] R_\lambda [/mm] v [mm] \parallel [/mm] ≤ [mm] \parallel [/mm] u − v [mm] \parallel. [/mm]

Hinweis: Für [mm] \lambda \not= [/mm]  0 betrachte zur Lösung von (I + [mm] \lambda A)u_n [/mm] = f die Rekursionsvorschrift:

[mm] \bruch{u_{n+1} - u_{n}}{\beta} [/mm] + (I [mm] +\lambda A)u_n [/mm] = f

für ein beliebiges [mm] u_0 \in [/mm] H und [mm] \beta [/mm] > 0 geeignet gewählt.

Hallo,

ich habe bei dieser Aufgabe Probleme die Existenz von von [mm] R_{\lambda} [/mm] zu zeigen, also dass (I + [mm] \lambda [/mm] A) bijektiv ist. Versucht habe ich das mit folgenden Ansatz: Sei

g(v):= [mm] \beta [/mm]   (f-(I + [mm] \lambda [/mm] A)v)+ v

Wenn ich zeigen kann, dass fgeine Kontraktion ist, dann folgt daraus, dass die oben gegebene Folge [mm] u_n [/mm] konvergiert. Nur komme ich bei dem Beweis zur Kontraktion nicht weiter. Mein Ansatz:

[mm] \parallel g(v)-g(w)\parallel =\parallel \beta(f-(I +\lambda [/mm] A)v) + v [mm] -\beta [/mm] (f-(I [mm] +\lambda [/mm] A)w+ [mm] w)\parallel [/mm]
          [mm] =\parallel(1- \beta)(v-w) [/mm] - [mm] (-\beta \lambda A)(v-w)\parallel [/mm]


Jetzt kann ich die Dreiecksgleichung anwenden etc., nur sehe ich nicht, wie ich hier anwenden kann, dass A akkretiv ist. Hat jemand eine Idee?

Grüße, hejaa

PS: akkretiv bedeutet, dass <A(v-w), v-w> [mm] \ge [/mm] 0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Akkretiver Operator, Existenz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:00 Fr 20.01.2012
Autor: fred97

Ich denke Ihr hattet folgendes:

Ist T [mm] \in [/mm] L(H) dissipativ, so gilt:

(1)  $||(sI-T)x|| [mm] \ge [/mm] s||x||$  für alle s>0 und alle x [mm] \in [/mm] H

und

(2) (sI-T)(H)=H  füe alle s>0

Aus (1) und (2) folgt:  


  (3)  [mm] $\{s \in \IR: s>0\} \subseteq \rho(T).$ [/mm]

Sei nun A akkretiv. Dann ist -A dissipativ. Ist nun [mm] \lambda>0, [/mm] so ist

              [mm] $I+\lambda A=\lambda(\bruch{1}{\lambda}-(-A))$ [/mm]

Aus  (3) folgt: [mm] \bruch{1}{\lambda} \in \rho(-A). [/mm] Damit ist [mm] $I+\lambda [/mm] A$ bijektiv.

Dass [mm] $I+\lambda [/mm] A$ für [mm] \lambda [/mm] =0 bijektiv ist, ist trivial.

FRED

Bezug
        
Bezug
Akkretiver Operator, Existenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Sa 21.01.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de