Algebra < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Beurteilen Sie begründet, ob die folgenden Aussagen wahr oder falsch sind.
Die von der Familie sin(nx), n [mm] \in \IN [/mm] erzeugte Algebra liegt dicht in
- [mm] C([0,2\pi]\IR)
[/mm]
- [mm] \IR^2 [/mm] |
Hallo!
Ich bin mir bei dieser Aussage sehr unsicher. Wenn ich zum Beispiel die Umgebung um den Punkt [mm] (\bruch{3 \cdot \pi}{2},5) [/mm] nehme mit [mm] \epsilon=1, [/mm] da kann es doch gar keine sinus-Funktion der Art sin(nx) geben, die Positiv ist oder? Denn wenn ich für n gerade Zahlen einsetze kommt immer null raus und wenn ich für n ungerade Zahlen einsetze kommt immer -1 raus...
Das verwirrt mich irgendwie, aber vielleicht sind meine Überlegungen ja auch falsch...
Wäre dankbar für eine Hilfe oder einen Tipp!!
Liebe Grüße Wiebke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:42 Mi 08.07.2009 | Autor: | statler |
> Beurteilen Sie begründet, ob die folgenden Aussagen wahr
> oder falsch sind.
> Die von der Familie sin(nx), n [mm]\in \IN[/mm] erzeugte Algebra
> liegt dicht in
> - [mm]C([0,2\pi]\IR)[/mm]
> - [mm]\IR^2[/mm]
Hi!
> Ich bin mir bei dieser Aussage sehr unsicher. Wenn ich zum
> Beispiel die Umgebung um den Punkt [mm](\bruch{3 \cdot \pi}{2},5)[/mm]
> nehme mit [mm]\epsilon=1,[/mm] da kann es doch gar keine
> sinus-Funktion der Art sin(nx) geben, die Positiv ist oder?
> Denn wenn ich für n gerade Zahlen einsetze kommt immer
> null raus und wenn ich für n ungerade Zahlen einsetze
> kommt immer -1 raus...
Du sollst ja auch die Algebra betrachten, wahrscheinlich die [mm] \IR-Algebra, [/mm] d. h. du darfst die Funktionen mit reellen Zahlen (und miteinander) multiplizieren. Dann ist dein (ansonsten richtiges) Argument hinfällig.
Was bedeuten denn
- [mm]C([0,2\pi]\IR)[/mm]
- [mm]\IR^2[/mm]
im Detail? Die stetigen reellwertigen Funktionen auf dem abgeschlossenen Intervall [0, [mm] 2\pi]? [/mm] Die Schreibweise ist mir nicht klar. Und das untere? Daß die Graphen in der Ebene dicht liegen?
Gruß
Dieter
|
|
|
|
|
Hi!
Ja das war vielleicht ein wenig unklar ausgedrückt.. Ich versuch nochmal mich genauer auszudrücken.
Also die Frage war ja, ob die von der Familie sin(nx) , [mm] n\in\IN [/mm] erzeugte Algebra dicht in [mm] C([0,2\pi],\IR) [/mm] bzw. in [mm] \IR^2 [/mm] liegt. Dabei ist [mm] C([0,2\pi],\IR) [/mm] der Raum der auf dem Intervall [mm] [0,2\pi] [/mm] stetigen reelwertigen Funktionen.
Mit Algebra ist die Banachalgebra gemeint,
das heißt ein Banachraum (A, [mm] \parallel^.\parallel_A) [/mm] mit der Multiplikation als zusätzlicher Verknüpfung, also mit A [mm] \cdot [/mm] A [mm] \rightarrow [/mm] A, wobei die Multiplikation bilinear, assosiativ aber nicht notwendigerweise kommutativ ist und den Raum zu einer Algebra macht, so dass für alle a,b [mm] \in [/mm] A gilt:
[mm] \parallel ab\parallel_A\ \le\ \parallel a\parallel_A\ \parallel b\parallel_A.
[/mm]
Das müsste dann doch heißen, dass ich mir eine beliebige Funktion aus C([0,2 [mm] \pi],\IR) [/mm] suchen kann, um die ich eine [mm] \epsilon-Umgebung [/mm] lege, also wie so ein Schlauch um die Funktion und dann muss es eine Funktion in der Algebra geben, die in diesem [mm] \epsilon-Schlauch [/mm] drinliegt. Dabei bin ich mir jetzt nicht ganz sicher, ob die Funktion komplett in dem [mm] \epsilon-Schlauch [/mm] liegen muss, oder ob es reicht, wenn ein Teil der Funktion, oder ein Punkt drinliegt???
Zu meinem gedachten Gegenbeispiel, da verstehe ich nicht, warum das nicht geht. Ich versuche nochmal das konkreter auszudrücken.
Also ich wähle mir die Funktion f(x)=10, die sowohl in [mm] C([0,2\pi],\IR) [/mm] als auch in [mm] \IR^2 [/mm] liegt. Und eine [mm] \epsilon-Umgebung. [/mm] Jetzt muss es eine Funktion der Form sin(nx) geben oder ein Produkt aus Funktionen der Form sin(nx), welche komplett in der [mm] \epsilon-Umgebung [/mm] von f liegt. Aber das n in sin(nx) staucht oder streckt ja nur die Funktion, das heißt, sie liegt trotzdem noch zwischen -1 und 1 und egal wie oft ich Zahlen zwischen -1 und 1 miteinander multipliziere ich komme doch nie über 1...
Ich wäre dankbar für jede Hilfe oder jeden Tipp!!
Liebe Grüße, Wiebke
|
|
|
|
|
Hallo!
Mir ist da gerade nochmal eine Idee gekommen.
Wenn ich eine Banachalgebra durch eine Familie von Funktionen erzeuge, darf ich die Funktionen dann auch miteinander addieren?
Dann wäre klar, warum mein Gegenbeispiel nicht geht und ich würde dazu tendieren zu sagen, die Algebra liegt dicht in [mm] C([0,2\pi],\IR).
[/mm]
Danke schonmal!
Liebe Grüße, Wiebke
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:06 Mi 08.07.2009 | Autor: | Merle23 |
> Hallo!
> Mir ist da gerade nochmal eine Idee gekommen.
> Wenn ich eine Banachalgebra durch eine Familie von
> Funktionen erzeuge, darf ich die Funktionen dann auch
> miteinander addieren?
Richtig.
> Dann wäre klar, warum mein Gegenbeispiel nicht geht und
> ich würde dazu tendieren zu sagen, die Algebra liegt dicht
> in [mm]C([0,2\pi],\IR).[/mm]
Denke doch mal an den Satz von Stone-Weierstraß.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:04 Mi 08.07.2009 | Autor: | Merle23 |
> Hi!
> Ja das war vielleicht ein wenig unklar ausgedrückt.. Ich
> versuch nochmal mich genauer auszudrücken.
>
> Also die Frage war ja, ob die von der Familie sin(nx) ,
> [mm]n\in\IN[/mm] erzeugte Algebra dicht in [mm]C([0,2\pi],\IR)[/mm] bzw. in
> [mm]\IR^2[/mm] liegt. Dabei ist [mm]C([0,2\pi],\IR)[/mm] der Raum der auf dem
> Intervall [mm][0,2\pi][/mm] stetigen reelwertigen Funktionen.
>
Dicht in [mm] \IR^2? [/mm] Was soll das heissen?
> Das müsste dann doch heißen, dass ich mir eine beliebige
> Funktion aus C([0,2 [mm]\pi],\IR)[/mm] suchen kann, um die ich eine
> [mm]\epsilon-Umgebung[/mm] lege, also wie so ein Schlauch um die
> Funktion und dann muss es eine Funktion in der Algebra
> geben, die in diesem [mm]\epsilon-Schlauch[/mm] drinliegt. Dabei bin
> ich mir jetzt nicht ganz sicher, ob die Funktion komplett
> in dem [mm]\epsilon-Schlauch[/mm] liegen muss, oder ob es reicht,
> wenn ein Teil der Funktion, oder ein Punkt drinliegt???
>
Komplett.
> Also ich wähle mir die Funktion f(x)=10, die sowohl in
> [mm]C([0,2\pi],\IR)[/mm] als auch in [mm]\IR^2[/mm] liegt.
Das ergibt keinen Sinn.
Was heisst "die Funktion f [mm] \equiv [/mm] 10 liegt in [mm] \IR^2"?
[/mm]
|
|
|
|